Suppr超能文献

基于无味卡尔曼滤波的非线性动态系统模型估计方法。

An Unscented Kalman Filter Approach to the Estimation of Nonlinear Dynamical Systems Models.

机构信息

a Department of Psychology , University of Notre Dame.

b Department of Psychology , University of California , Davis.

出版信息

Multivariate Behav Res. 2007 Apr-Jun;42(2):283-321. doi: 10.1080/00273170701360423.

Abstract

In the past several decades, methodologies used to estimate nonlinear relationships among latent variables have been developed almost exclusively to fit cross-sectional models. We present a relatively new estimation approach, the unscented Kalman filter (UKF), and illustrate its potential as a tool for fitting nonlinear dynamic models in two ways: (1) as a building block for approximating the log-likelihood of nonlinear state-space models and (2) to fit time-varying dynamic models wherein parameters are represented and estimated online as other latent variables. Furthermore, the substantive utility of the UKF is demonstrated using simulated examples of (1) the classical predator-prey model with time series and multiple-subject data, (2) the chaotic Lorenz system and (3) an empirical example of dyadic interaction.

摘要

在过去的几十年中,用于估计潜在变量之间非线性关系的方法几乎完全是为了拟合横截面模型而开发的。我们提出了一种相对较新的估计方法,未扩展卡尔曼滤波器(UKF),并通过两种方式说明了其作为拟合非线性动态模型的工具的潜力:(1)作为近似非线性状态空间模型的对数似然的构建块,以及(2)拟合时变动态模型,其中参数作为其他潜在变量在线表示和估计。此外,通过(1)具有时间序列和多主体数据的经典捕食者-被捕食者模型、(2)混沌 Lorenz 系统和(3)二元交互的实证示例,展示了 UKF 的实质性实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验