Suppr超能文献

用于肿瘤异质性分析的空间转录组学

Spatial Transcriptomics for Tumor Heterogeneity Analysis.

作者信息

Li Qiongyu, Zhang Xinya, Ke Rongqin

机构信息

School of Medicine, Huaqiao University, Quanzhou, China.

出版信息

Front Genet. 2022 Jul 5;13:906158. doi: 10.3389/fgene.2022.906158. eCollection 2022.

Abstract

The molecular heterogeneity of cancer is one of the major causes of drug resistance that leads to treatment failure. Thus, better understanding the heterogeneity of cancer will contribute to more precise diagnosis and improved patient outcomes. Although single-cell sequencing has become an important tool for investigating tumor heterogeneity recently, it lacks the spatial information of analyzed cells. In this regard, spatial transcriptomics holds great promise in deciphering the complex heterogeneity of cancer by providing localization-indexed gene expression information. This study reviews the applications of spatial transcriptomics in the study of tumor heterogeneity, discovery of novel spatial-dependent mechanisms, tumor immune microenvironment, and matrix microenvironment, as well as the pathological classification and prognosis of cancer. Finally, future challenges and opportunities for spatial transcriptomics technology's applications in cancer are also discussed.

摘要

癌症的分子异质性是导致治疗失败的耐药性的主要原因之一。因此,更好地了解癌症的异质性将有助于更精确的诊断并改善患者预后。尽管单细胞测序最近已成为研究肿瘤异质性的重要工具,但它缺乏所分析细胞的空间信息。在这方面,空间转录组学通过提供定位索引的基因表达信息,在破译癌症复杂的异质性方面具有巨大潜力。本研究综述了空间转录组学在肿瘤异质性研究、新的空间依赖性机制发现、肿瘤免疫微环境和基质微环境以及癌症的病理分类和预后方面的应用。最后,还讨论了空间转录组学技术在癌症应用中的未来挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d322/9309247/73feef74a6ba/fgene-13-906158-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验