Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
Global Pharmacokinetics/Pharmacodynamics and Pharmacometrics, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana, USA.
CPT Pharmacometrics Syst Pharmacol. 2022 Nov;11(11):1443-1457. doi: 10.1002/psp4.12854. Epub 2022 Sep 7.
Glycated hemoglobin (HbA1c) is the main biomarker of diabetes drug development. However, because of its delayed turnover, trial duration is rarely shorter than 12 weeks, and being able to predict long-term HbA1c with precision using data from shorter studies would be beneficial. The feasibility of reducing study duration was therefore investigated in this study, assuming a model-based analysis. The aim was to investigate the predictive performance of 24- and 52-week extrapolations using data from up to 4, 6, 8 or 12 weeks, with six previously published pharmacometric models of HbA1c. Predictive performance was assessed through simulation-based dose-response predictions and model averaging (MA) with two hypothetical drugs. Results were consistent across the methods of assessment, with MA supporting the results derived from the model-based framework. The models using mean plasma glucose (MPG) or nonlinear fasting plasma glucose (FPG) effect, driving the HbA1c formation, showed good predictive performance despite a reduced study duration. The models, using the linear effect of FPG to drive the HbA1c formation, were sensitive to the limited amount of data in the shorter studies. The MA with bootstrap demonstrated strongly that a 4-week study duration is insufficient for precise predictions of all models. Our findings suggest that if data are analyzed with a pharmacometric model with MPG or FPG with a nonlinear effect to drive HbA1c formation, a study duration of 8 weeks is sufficient with maintained accuracy and precision of dose-response predictions.
糖化血红蛋白 (HbA1c) 是糖尿病药物开发的主要生物标志物。然而,由于其半衰期较长,试验通常很少短于 12 周,如果能够使用更短研究中的数据准确预测长期 HbA1c,将非常有益。因此,本研究假设基于模型的分析,考察了缩短研究时间的可行性。目的是使用多达 4、6、8 或 12 周的数据,调查使用六个先前发表的 HbA1c 药代动力学模型进行 24 周和 52 周外推的预测性能。通过基于模拟的剂量反应预测和两种假设药物的模型平均 (MA) 评估预测性能。评估方法的结果一致,MA 支持基于模型框架得出的结果。尽管研究时间缩短,但使用平均血浆葡萄糖 (MPG) 或非线性空腹血糖 (FPG) 效应来驱动 HbA1c 形成的模型显示出良好的预测性能。使用 FPG 的线性效应来驱动 HbA1c 形成的模型对较短研究中的有限数据较为敏感。使用 bootstrap 的 MA 强烈表明,4 周的研究时间不足以对所有模型进行精确预测。我们的研究结果表明,如果使用具有 MPG 或具有非线性效应的 FPG 来驱动 HbA1c 形成的药代动力学模型进行数据分析,8 周的研究时间是足够的,并且可以保持剂量反应预测的准确性和精密度。