Suppr超能文献

原位制备用于钠离子电池的具有优异性能的 FeSe 阳极活性界面。

In-situ fabrication of active interfaces towards FeSe as advanced performance anode for sodium-ion batteries.

作者信息

Wang Shige, Cui Tingting, Shao Lianyi, Yang Shenghong, Yu Lu, Guan Jieduo, Shi Xiaoyan, Cai Junjie, Sun Zhipeng

机构信息

School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.

School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.

出版信息

J Colloid Interface Sci. 2022 Dec;627:922-930. doi: 10.1016/j.jcis.2022.07.094. Epub 2022 Jul 21.

Abstract

Transition metal selenides have gained enormous interest as anodes for sodium ion batteries (SIBs). Nonetheless, their large volume expansion causing poor rate and inferior cycle stability during Na insertion/extraction process hinders their further applications in SIBs. Herein, a confined-regulated interfacial engineering strategy towards the synthesis of FeSe microparticles coated by ultrathin nitrogen-doped carbon (NC) is demonstrated (FeSe@NC). The strong interfacial interaction between FeSeand NC endows FeSe@NC with fast electron/Na transport kinetics and outstanding structural stability, delivering unexceptionable rate capability (364 mAh/gat 10 A/g) and preeminent cycling durability (capacity retention of 100 % at 1 A/g over 1000 cycles). Furthermore, variousex situcharacterization techniques and density functional theory (DFT) calculations have been applied to demonstrate the Na storage mechanism of FeSe@NC. The assembled NaV(PO)F@rGO//FeSe@NC full cell also displays a high capacity of 241 mAh/gat 1 A/g with the capacity retention of nearly 100 % over 2000 cycles, and delivers a supreme energy density of 135 Wh kg and a topmost power density of 495 W kg, manifesting the latent applications of FeSe@NC in the fast charging SIBs.

摘要

过渡金属硒化物作为钠离子电池(SIBs)的负极材料已引起了广泛关注。然而,在钠嵌入/脱出过程中,它们的体积膨胀较大,导致倍率性能较差和循环稳定性不佳,这阻碍了它们在SIBs中的进一步应用。在此,展示了一种用于合成超薄氮掺杂碳(NC)包覆的FeSe微粒的受限调控界面工程策略(FeSe@NC)。FeSe与NC之间的强界面相互作用赋予FeSe@NC快速的电子/钠传输动力学和出色的结构稳定性,使其具有优异的倍率性能(在10 A/g时为364 mAh/g)和卓越的循环耐久性(在1 A/g下循环1000次容量保持率为100%)。此外,还应用了各种原位表征技术和密度泛函理论(DFT)计算来阐明FeSe@NC的储钠机制。组装的NaV(PO)F@rGO//FeSe@NC全电池在1 A/g时也具有241 mAh/g的高容量,在2000次循环中容量保持率接近100%,并具有135 Wh kg的最高能量密度和495 W kg的最大功率密度,这表明FeSe@NC在快速充电SIBs中具有潜在的应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验