Suppr超能文献

移动医疗-社区卫生工作者远程医疗干预用于手术部位感染诊断:在卢旺达农村行剖宫产分娩的妇女中的前瞻性研究。

mHealth-community health worker telemedicine intervention for surgical site infection diagnosis: a prospective study among women delivering via caesarean section in rural Rwanda.

机构信息

Research Department, Partners In Health/Inshuti Mu Buzima, Kigali, Rwanda

Epidemiology, Department of Sport and Health Sciences, Technical University of Munich, München, Germany.

出版信息

BMJ Glob Health. 2022 Jul;7(7). doi: 10.1136/bmjgh-2022-009365.

Abstract

BACKGROUND

Surgical site infections (SSIs) cause a significant global public health burden in low and middle-income countries. Most SSIs develop after patient discharge and may go undetected. We assessed the feasibility and diagnostic accuracy of an mHealth-community health worker (CHW) home-based telemedicine intervention to diagnose SSIs in women who delivered via caesarean section in rural Rwanda.

METHODS

This prospective cohort study included women who underwent a caesarean section at Kirehe District Hospital between September 2019 and March 2020. At postoperative day 10 (±3 days), a trained CHW visited the woman at home, provided wound care and transmitted a photo of the wound to a remote general practitioner (GP) via WhatsApp. The GP reviewed the photo and made an SSI diagnosis. The next day, the woman returned to the hospital for physical examination by an independent GP, whose SSI diagnosis was considered the gold standard for our analysis. We describe the intervention process indicators and report the sensitivity and specificity of the telemedicine-based diagnosis.

RESULTS

Of 787 women included in the study, 91.4% (n=719) were located at their home by the CHW and all of them (n=719, 100%) accepted the intervention. The full intervention was completed, including receipt of GP telemedicine diagnosis within 1 hour, for 79.0% (n=623). The GPs diagnosed 30 SSIs (4.2%) through telemedicine and 38 SSIs (5.4%) through physical examination. The telemedicine sensitivity was 36.8% and specificity was 97.6%. The negative predictive value was 96.4%.

CONCLUSIONS

Implementation of an mHealth-CHW home-based intervention in rural Rwanda and similar settings is feasible. Patients' acceptance of the intervention was key to its success. The telemedicine-based SSI diagnosis had a high negative predictive value but a low sensitivity. Further studies must explore strategies to improve accuracy, such as accompanying wound images with clinical data or developing algorithms using machine learning.

摘要

背景

手术部位感染(SSI)在中低收入国家造成了重大的全球公共卫生负担。大多数 SSI 发生在患者出院后,可能未被发现。我们评估了一种移动医疗-社区卫生工作者(CHW)家庭远程医疗干预措施的可行性和诊断准确性,以诊断在卢旺达农村地区行剖宫产的妇女的 SSI。

方法

这项前瞻性队列研究纳入了 2019 年 9 月至 2020 年 3 月期间在基里谢区医院行剖宫产的妇女。术后第 10 天(±3 天),一名经过培训的 CHW 家访,提供伤口护理,并通过 WhatsApp 将伤口的照片传输给远程全科医生(GP)。GP 查看照片并做出 SSI 诊断。第二天,该妇女返回医院由独立的 GP 进行体格检查,后者的 SSI 诊断被认为是我们分析的金标准。我们描述了干预过程指标,并报告了基于远程医疗的诊断的敏感性和特异性。

结果

在纳入的 787 名妇女中,91.4%(n=719)由 CHW 找到在家中,并且所有妇女(n=719,100%)均接受了干预。79.0%(n=623)完成了完整的干预,包括在 1 小时内收到 GP 远程医疗诊断。GP 通过远程医疗诊断了 30 例 SSI(4.2%),通过体格检查诊断了 38 例 SSI(5.4%)。远程医疗的敏感性为 36.8%,特异性为 97.6%。阴性预测值为 96.4%。

结论

在卢旺达农村和类似环境中实施移动医疗-CHW 家庭干预是可行的。患者对干预的接受是成功的关键。基于远程医疗的 SSI 诊断具有较高的阴性预测值,但敏感性较低。进一步的研究必须探索提高准确性的策略,例如使用机器学习为伤口图像附上临床数据或开发算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e73d/9341172/65a3efe2f1b0/bmjgh-2022-009365f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验