Suppr超能文献

实验室中用于模拟小胶质细胞爆炸伤的新型平台开发

A Novel Platform Development in the Lab for Modeling Blast Injury to Microglia.

作者信息

Xu Dasen, Zhang Nu, Wang Sijie, Yu Yawei, Zhang Pan, Li Yulong, Yang Hui

机构信息

School of Aeronautics, Northwestern Polytechnical University, Xi'an, China.

Center of Special Environmental Biomechanics and Biomedical Engineering, Northwestern Polytechnical University, Xi'an, China.

出版信息

Front Bioeng Biotechnol. 2022 Jul 12;10:883545. doi: 10.3389/fbioe.2022.883545. eCollection 2022.

Abstract

Traumatic brain injury (TBI), which is mainly caused by impact, often results in chronic neurological abnormalities. Since the pathological changes during primary biomechanical injury are quite complicated, the in-depth understanding of the pathophysiology and mechanism of TBI depends on the establishment of an effective experimental model. Usually, a bomb explosive blast was employed to establish the model, while the process is complex and unsuitable in the lab. Based on water-hammer, we have developed a device system to provide a single dynamic compression stress on living cells. A series of amplitude (∼5.3, ∼9.8, ∼13.5 MPa) were generated to explore the effects of dynamic compression loading on primary microglia within 48 h. Apoptosis experiments indicated that primary microglia had strong tolerance to blast waves. In addition, the generation of intercellular reactive oxygen species and secretory nitric oxide was getting strongly enhanced and recovered within 48 h. In addition, there is a notable release of pro-inflammatory cytokine by microglia. Our work provides a reproducible and peaceable method of loading single dynamic compression forces to cells . Microglia showed an acute inflammatory response to dynamic loadings, while no significant cell death was observed. This insight delivers a new technological approach that could open new areas to a better understanding of the mechanism of cell blast injuries.

摘要

创伤性脑损伤(TBI)主要由撞击引起,常导致慢性神经功能异常。由于原发性生物力学损伤期间的病理变化相当复杂,对TBI病理生理学和机制的深入理解依赖于建立有效的实验模型。通常,采用炸弹爆炸来建立该模型,但该过程复杂且不适用于实验室。基于水锤原理,我们开发了一种装置系统,可对活细胞施加单一动态压缩应力。产生了一系列振幅(约5.3、约9.8、约13.5兆帕),以探究动态压缩加载在48小时内对原代小胶质细胞的影响。凋亡实验表明,原代小胶质细胞对冲击波具有较强的耐受性。此外,细胞内活性氧的产生和分泌型一氧化氮在48小时内得到强烈增强并恢复。此外,小胶质细胞有明显的促炎细胞因子释放。我们的工作提供了一种可重复且安全的向细胞施加单一动态压缩力的方法。小胶质细胞对动态加载表现出急性炎症反应,但未观察到明显的细胞死亡。这一见解提供了一种新的技术方法,可为更好地理解细胞爆炸损伤机制开辟新领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验