Emergency Medicine Department of General Hospital of Shenyang Military Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang 110016, China.
Exp Biol Med (Maywood). 2018 Jul;243(11):934-944. doi: 10.1177/1535370218784539. Epub 2018 Jul 8.
Severe lung damage is a major cause of death in blast victims, but the mechanisms of pulmonary blast injury are not well understood. Therefore, it is important to study the injury mechanism of pulmonary blast injury. A model of lung injury induced by blast exposure was established by using a simulation blast device. The effectiveness and reproducibility of the device were investigated. Eighty mice were randomly divided into eight groups: control group and 3 h, 6 h, 12 h, 24 h, 48 h, 7 days and 14 days post blast. The explosive device induced an explosion injury model of a single lung injury in mice. The success rate of the model was as high as 90%, and the degree of lung injury was basically the same under the same pressure. Under the same conditions, the thickness of the aluminum film can be from 0.8 mm to 1.6 mm, and the peak pressure could be from 95.85 ± 15.61 PSI to 423.32 ± 11.64 PSI. There is no statistical difference in intragroup comparison. A follow-up lung injury experiment using an aluminum film thickness of 1.4 mm showed a pressure of 337.46 ± 18.30 PSI induced a mortality rate of approximately 23.2%. Compared with the control group (372 ± 23 times/min, 85.9 ± 9.4 mmHg, 4.34 ± 0.09), blast exposed mice had decreased heart rate (283 ± 21 times/min) and blood pressure (73.6 ± 3.6 mmHg), and increased lung wet/dry weight ratio(2.67 ± 0.11), marked edematous lung tissue, ruptured blood vessels, infiltrating inflammatory cells, increased NF-κB (4.13 ± 0.01), TNF-α (4.13 ± 0.01), IL-1β (2.43 ± 0.01) and IL-6 (4.65 ± 0.01) mRNA and protein, decreased IL-10(0.18 ± 0.02) mRNA and protein ( P < 0.05). The formation of ROS and the expression of MDA5 (4.46 ± 0.01) and IREα (3.43 ± 0.00) mRNA and protein were increased and the expression of SOD-1 (0.28 ± 0.02) mRNA and protein was decreased ( P < 0.05). Increased expression of Bax (3.54 ± 0.00) and caspase 3 (4.18 ± 0.01) mRNA and protein inhibited the expression of Bcl-2 (0.39 ± 0.02) mRNA and protein. The changes of pulmonary edema, inflammatory cell infiltration, and cell damage factor expression increased gradually with time, and reached the peak at 12-24 h after the outbreak, and returned to normal at 7-14 days. Detonation injury can lead to edema of lung tissue, pulmonary hemorrhage, rupture of pulmonary vessels, induction of early inflammatory responses accompanied by increased oxidative stress in lung tissue cells and increased apoptosis in mice experiencing blast injury. The above results are consistent with those reported in other literatures. It is showed that the mouse lung blast injury model is successfully modeled, and the device can be used for the study of pulmonary blast injury. Impact statement The number of patients with explosive injury has increased year by year, but there is no better treatment. However, the research on detonation injury is difficult to carry out. One of the factors is the difficulty in making the model of blast injury. The laboratory successfully developed and produced a simulation device of explosive knocking through a large amount of literature data and preliminary experiments, and verified the preparation of the simulation device through various experimental techniques. The results showed that the device could simulate the shock wave-induced acute lung injury generated, which was similar to the actual knocking injury. The experimental process was controlled. Under the same condition, there was no statistical difference between the groups. It is possible to realize miniaturization and precision of an explosive knocking simulation device, which is a good experimental tool for further research on the mechanism of organ damage caused by detonation and the development of protective drugs.
严重的肺部损伤是爆炸受害者死亡的主要原因,但肺部爆炸伤的机制尚不清楚。因此,研究肺部爆炸伤的损伤机制非常重要。本研究通过使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。
使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。使用模拟爆炸装置建立了一种由爆炸暴露引起的肺损伤模型,以研究爆炸伤的损伤机制。
该模型的有效性和可重复性通过 80 只小鼠的实验得到了验证,其中 8 只作为对照组,其余小鼠分别在爆炸暴露后 3 h、6 h、12 h、24 h、48 h、7 d 和 14 d 进行处理。实验结果表明,该装置能够成功诱导小鼠的单一肺损伤模型,模型成功率高达 90%,且在相同压力下,肺损伤程度基本相同。在相同条件下,铝膜的厚度可以从 0.8 毫米到 1.6 毫米不等,峰值压力可以从 95.85±15.61 PSI 到 423.32±11.64 PSI 不等。组内比较无统计学差异。使用厚度为 1.4 毫米的铝膜进行后续的肺损伤实验,结果显示压力为 337.46±18.30 PSI 时,死亡率约为 23.2%。与对照组(372±23 次/分钟、85.9±9.4 mmHg、4.34±0.09)相比,暴露于爆炸冲击波的小鼠心率(283±21 次/分钟)和血压(73.6±3.6 mmHg)降低,肺湿/干重比(2.67±0.11)升高,肺组织明显水肿,血管破裂,浸润炎症细胞,NF-κB(4.13±0.01)、TNF-α(4.13±0.01)、IL-1β(2.43±0.01)和 IL-6(4.65±0.01)mRNA 和蛋白表达增加,IL-10(0.18±0.02)mRNA 和蛋白表达减少(P<0.05)。ROS 形成和 MDA5(4.46±0.01)和 IREα(3.43±0.00)mRNA 和蛋白的表达增加,SOD-1(0.28±0.02)mRNA 和蛋白的表达减少(P<0.05)。Bax(3.54±0.00)和 caspase 3(4.18±0.01)mRNA 和蛋白的表达增加,抑制了 Bcl-2(0.39±0.02)mRNA 和蛋白的表达。肺水肿、炎症细胞浸润和细胞损伤因子表达的变化随着时间的推移逐渐增加,在爆发后 12-24 小时达到高峰,7-14 天后恢复正常。
综上所述,爆炸冲击伤可导致肺组织水肿、肺出血、肺血管破裂,诱导小鼠早期炎症反应,同时伴有肺组织细胞氧化应激增加和细胞凋亡增加。上述结果与其他文献报道一致。研究表明,成功建立了小鼠肺爆震伤模型,该装置可用于爆震伤的研究。