Faculty of Information Technology, Beijing University of Technology, Beijing, China.
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
Med Phys. 2022 Oct;49(10):6439-6450. doi: 10.1002/mp.15889. Epub 2022 Aug 14.
Due to the different posture of the subject and settings of CT scanners, the CT images of the human temporal bone should be geometrically aligned with multiplanar reconstruction to ensure the symmetry of the bilateral anatomical structure. Manual alignment is a time-consuming task for radiologists and an important preprocessing step for further computer-aided CT analysis. We propose a fully automatic alignment algorithm for temporal bone CT images via lateral semicircular canals (LSCs) segmentation.
The LSCs are segmented with our proposed multifeature fusion network as anchors at first. Then, we define a standard 3D coordinate system and propose an alignment procedure.
The experimental results show that our LSC segmentation network achieved a higher segmentation accuracy. The acceptable rate is achieved 85% over 910 raw temporal bone CT sequences. The alignment speed is reduced from 10 min by manual to 60s.
Aiming at the problem of bilateral asymmetry in the raw temporal bone CT images, we propose an automatic geometric alignment method. Our proposed method can help to perform alignment of temporal bone CT images efficiently.
由于受检者体位和 CT 扫描仪设置的影响,人颞骨的 CT 图像需要进行几何配准和多平面重建,以确保双侧解剖结构的对称性。手动配准对于放射科医生来说是一项耗时的任务,也是进一步进行计算机辅助 CT 分析的重要预处理步骤。我们提出了一种通过外侧半规管(LSC)分割实现颞骨 CT 图像全自动配准的算法。
首先,我们使用提出的多特征融合网络对 LSC 进行分割作为锚点。然后,我们定义了一个标准的 3D 坐标系,并提出了一种配准过程。
实验结果表明,我们的 LSC 分割网络具有更高的分割精度。在 910 组原始颞骨 CT 序列中,可接受率达到 85%。与手动配准(耗时 10 分钟)相比,自动配准速度提高到 60 秒。
针对原始颞骨 CT 图像双侧不对称的问题,我们提出了一种自动几何配准方法。我们的方法可以有效地帮助进行颞骨 CT 图像的配准。