Suppr超能文献

基于图谱的颞骨解剖分割。

Atlas-Based Segmentation of Temporal Bone Anatomy.

机构信息

Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.

Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, USA.

出版信息

Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1937-1944. doi: 10.1007/s11548-017-1658-6. Epub 2017 Aug 29.

Abstract

PURPOSE

To develop a time-efficient automated segmentation approach that could identify critical structures in the temporal bone for visual enhancement and use in surgical simulation software.

METHODS

An atlas-based segmentation approach was developed to segment the cochlea, ossicles, semicircular canals (SCCs), and facial nerve in normal temporal bone CT images. This approach was tested in images of 26 cadaver bones (13 left, 13 right). The results of the automated segmentation were compared to manual segmentation visually and using DICE metric, average Hausdorff distance, and volume similarity.

RESULTS

The DICE metrics were greater than 0.8 for the cochlea, malleus, incus, and the SCCs combined. It was slightly lower for the facial nerve. The average Hausdorff distance was less than one voxel for all structures, and the volume similarity was 0.86 or greater for all structures except the stapes.

CONCLUSIONS

The atlas-based approach with rigid body registration of the otic capsule was successful in segmenting critical structures of temporal bone anatomy for use in surgical simulation software.

摘要

目的

开发一种高效的自动化分割方法,以便识别颞骨中的关键结构,用于视觉增强和手术模拟软件。

方法

采用基于图谱的分割方法对正常颞骨 CT 图像中的耳蜗、听小骨、半规管(SCC)和面神经进行分割。该方法在 26 具尸体骨骼(13 具左侧,13 具右侧)的图像上进行了测试。自动分割的结果通过视觉和 DICE 度量、平均 Hausdorff 距离和体积相似性与手动分割进行了比较。

结果

耳蜗、锤骨、砧骨和 SCC 组合的 DICE 度量值大于 0.8。面神经的稍低。所有结构的平均 Hausdorff 距离均小于一个体素,除镫骨外,所有结构的体积相似性均为 0.86 或更高。

结论

基于图谱的方法结合耳囊的刚体配准,成功地对颞骨解剖的关键结构进行了分割,可用于手术模拟软件。

相似文献

1
Atlas-Based Segmentation of Temporal Bone Anatomy.
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1937-1944. doi: 10.1007/s11548-017-1658-6. Epub 2017 Aug 29.
2
Atlas-based segmentation of temporal bone surface structures.
Int J Comput Assist Radiol Surg. 2019 Aug;14(8):1267-1273. doi: 10.1007/s11548-019-01978-2. Epub 2019 Apr 25.
3
Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery.
Otolaryngol Head Neck Surg. 2022 Jul;167(1):133-140. doi: 10.1177/01945998211044982. Epub 2021 Sep 7.
4
A Self-Configuring Deep Learning Network for Segmentation of Temporal Bone Anatomy in Cone-Beam CT Imaging.
Otolaryngol Head Neck Surg. 2023 Oct;169(4):988-998. doi: 10.1002/ohn.317. Epub 2023 Mar 8.
5
Tomographic anatomy of the ear.
Radiol Clin North Am. 1974 Dec;12(3):405-17.
6
High resolution CT scan of the temporal bone.
J Otolaryngol. 1983 Apr;12(2):119-24.
7
Automatic identification and 3D rendering of temporal bone anatomy.
Otol Neurotol. 2009 Jun;30(4):436-42. doi: 10.1097/MAO.0b013e31819e61ed.
8
Atlas-based segmentation of cochlear microstructures in cone beam CT.
Int J Comput Assist Radiol Surg. 2021 Mar;16(3):363-373. doi: 10.1007/s11548-020-02304-x. Epub 2021 Feb 13.
9
PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans.
IEEE Trans Image Process. 2021;30:739-753. doi: 10.1109/TIP.2020.3038363. Epub 2020 Dec 4.
10
Anatomical Characteristics of Facial Nerve and Cochlea Interaction.
Audiol Neurootol. 2017;22(1):41-49. doi: 10.1159/000475876. Epub 2017 Jun 20.

引用本文的文献

3
Three-dimensional replica of the temporal bone in the teaching of human anatomy.
Surg Radiol Anat. 2024 Aug;46(8):1345-1353. doi: 10.1007/s00276-024-03417-7. Epub 2024 Jun 22.
4
Diagnosis, Treatment, and Management of Otitis Media with Artificial Intelligence.
Diagnostics (Basel). 2023 Jul 7;13(13):2309. doi: 10.3390/diagnostics13132309.
5
Estimating age at death by Hausdorff distance analyses of the fourth lumbar vertebral bodies using 3D postmortem CT images.
Forensic Sci Med Pathol. 2024 Jun;20(2):472-479. doi: 10.1007/s12024-023-00620-7. Epub 2023 Apr 14.
6
Deep learning-based approach for the automatic segmentation of adult and pediatric temporal bone computed tomography images.
Quant Imaging Med Surg. 2023 Mar 1;13(3):1577-1591. doi: 10.21037/qims-22-658. Epub 2023 Feb 10.
9
A dual-stage deep convolutional neural network for automatic diagnosis of COVID-19 and pneumonia from chest CT images.
Comput Biol Med. 2022 Oct;149:105806. doi: 10.1016/j.compbiomed.2022.105806. Epub 2022 Jul 19.
10
Fully automated segmentation in temporal bone CT with neural network: a preliminary assessment study.
BMC Med Imaging. 2021 Nov 9;21(1):166. doi: 10.1186/s12880-021-00698-x.

本文引用的文献

1
High-fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery.
Comput Assist Surg (Abingdon). 2016 Dec;21(1):85-101. doi: 10.1080/24699322.2016.1189966.
3
Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool.
BMC Med Imaging. 2015 Aug 12;15:29. doi: 10.1186/s12880-015-0068-x.
4
Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease.
Front Neuroinform. 2014 Jan 16;7:50. doi: 10.3389/fninf.2013.00050. eCollection 2013.
5
Virtual reality case-specific rehearsal in temporal bone surgery: a preliminary evaluation.
Int J Surg. 2014;12(2):141-5. doi: 10.1016/j.ijsu.2013.11.019. Epub 2013 Dec 6.
6
Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment.
Otolaryngol Head Neck Surg. 2014 Jan;150(1):107-14. doi: 10.1177/0194599813510862. Epub 2013 Oct 29.
7
TREK: an integrated system architecture for intraoperative cone-beam CT-guided surgery.
Int J Comput Assist Radiol Surg. 2012 Jan;7(1):159-73. doi: 10.1007/s11548-011-0636-7. Epub 2011 Jul 9.
8
Automatic segmentation of intracochlear anatomy in conventional CT.
IEEE Trans Biomed Eng. 2011 Sep;58(9):2625-32. doi: 10.1109/TBME.2011.2160262. Epub 2011 Jun 23.
9
Reconstruction and exploration of virtual middle-ear models derived from micro-CT datasets.
Hear Res. 2010 May;263(1-2):198-203. doi: 10.1016/j.heares.2010.01.007. Epub 2010 Jan 25.
10
elastix: a toolbox for intensity-based medical image registration.
IEEE Trans Med Imaging. 2010 Jan;29(1):196-205. doi: 10.1109/TMI.2009.2035616. Epub 2009 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验