Liu Genlin, Wang Wenmin, Zeng Pan, Yuan Cheng, Wang Lei, Li Hongtai, Zhang Hao, Sun Xuhui, Dai Kehua, Mao Jing, Li Xin, Zhang Liang
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China.
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China.
Nano Lett. 2022 Aug 10;22(15):6366-6374. doi: 10.1021/acs.nanolett.2c02183. Epub 2022 Jul 29.
Although single-atom catalysts (SACs) have been largely explored in lithium-sulfur (Li-S) batteries, the commonly reported nonpolar transition metal-N coordinations only demonstrate inferior adsorption and catalytic activity toward shuttled lithium polysulfides (LiPSs). Herein, single Fe atoms with asymmetric coordination configurations of Fe-NC-C were precisely designed and synthesized as efficient immobilizer and catalyst for LiPSs. The experimental and theoretical results elucidate that the asymmetrically coordinated Fe-NC-C moieties not only enhance the LiPSs anchoring capability by the formation of extra π-bonds originating from S p orbital and Fe d/d orbital hybridization but also boost the redox kinetics of LiPSs with reduced LiS precipitation/decomposition barrier, leading to suppressed shuttle effect. Consequently, the Li-S batteries assembled with Fe-NC-C exhibit high areal capacity and cycling stability even under high sulfur loading and lean electrolyte conditions. This work highlights the important role of coordination symmetry of SACs for promoting the practical application of Li-S batteries.
尽管单原子催化剂(SACs)在锂硫(Li-S)电池中已得到广泛研究,但常见的非极性过渡金属-N配位对穿梭的多硫化锂(LiPSs)仅表现出较差的吸附和催化活性。在此,具有Fe-NC-C不对称配位构型的单个铁原子被精确设计并合成,作为LiPSs的高效固定剂和催化剂。实验和理论结果表明,不对称配位的Fe-NC-C部分不仅通过形成源于S p轨道和Fe d/d轨道杂化的额外π键增强了LiPSs的锚定能力,还通过降低LiS沉淀/分解势垒提高了LiPSs的氧化还原动力学,从而抑制了穿梭效应。因此,即使在高硫负载和贫电解质条件下,用Fe-NC-C组装的Li-S电池也表现出高面积容量和循环稳定性。这项工作突出了SACs配位对称性对促进Li-S电池实际应用的重要作用。