Suppr超能文献

人工智能引导的数字 PET 增强:扫描速度堪比 CT 吗?

Artificial intelligence guided enhancement of digital PET: scans as fast as CT?

机构信息

Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.

Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, 45131, Essen, Germany.

出版信息

Eur J Nucl Med Mol Imaging. 2022 Nov;49(13):4503-4515. doi: 10.1007/s00259-022-05901-x. Epub 2022 Jul 29.

Abstract

PURPOSE

Both digital positron emission tomography (PET) detector technologies and artificial intelligence based image post-reconstruction methods allow to reduce the PET acquisition time while maintaining diagnostic quality. The aim of this study was to acquire ultra-low-count fluorodeoxyglucose (FDG) ExtremePET images on a digital PET/computed tomography (CT) scanner at an acquisition time comparable to a CT scan and to generate synthetic full-dose PET images using an artificial neural network.

METHODS

This is a prospective, single-arm, single-center phase I/II imaging study. A total of 587 patients were included. For each patient, a standard and an ultra-low-count FDG PET/CT scan (whole-body acquisition time about 30 s) were acquired. A modified pix2pixHD deep-learning network was trained employing 387 data sets as training and 200 as test cohort. Three models (PET-only and PET/CT with or without group convolution) were compared. Detectability and quantification were evaluated.

RESULTS

The PET/CT input model with group convolution performed best regarding lesion signal recovery and was selected for detailed evaluation. Synthetic PET images were of high visual image quality; mean absolute lesion SUV (maximum standardized uptake value) difference was 1.5. Patient-based sensitivity and specificity for lesion detection were 79% and 100%, respectively. Not-detected lesions were of lower tracer uptake and lesion volume. In a matched-pair comparison, patient-based (lesion-based) detection rate was 89% (78%) for PERCIST (PET response criteria in solid tumors)-measurable and 36% (22%) for non PERCIST-measurable lesions.

CONCLUSION

Lesion detectability and lesion quantification were promising in the context of extremely fast acquisition times. Possible application scenarios might include re-staging of late-stage cancer patients, in whom assessment of total tumor burden can be of higher relevance than detailed evaluation of small and low-uptake lesions.

摘要

目的

数字正电子发射断层扫描(PET)探测器技术和基于人工智能的图像后重建方法都可以在保持诊断质量的同时,减少 PET 采集时间。本研究旨在使用数字 PET/计算机断层扫描(CT)扫描仪在与 CT 扫描相当的采集时间内获取超低计数氟脱氧葡萄糖(FDG)ExtremePET 图像,并使用人工神经网络生成合成全剂量 PET 图像。

方法

这是一项前瞻性、单臂、单中心 I/II 期成像研究。共纳入 587 例患者。每位患者均进行标准和超低计数 FDG PET/CT 扫描(全身采集时间约 30 秒)。使用 387 个数据集进行训练和 200 个数据集进行测试,训练了一个改良的 pix2pixHD 深度学习网络。比较了三个模型(仅 PET 和 PET/CT 以及是否使用组卷积)。评估了可检测性和定量。

结果

在病灶信号恢复方面,具有组卷积的 PET/CT 输入模型表现最佳,因此被选中进行详细评估。合成 PET 图像具有较高的视觉图像质量;平均绝对病灶 SUV(最大标准化摄取值)差异为 1.5。基于患者的病灶检测灵敏度和特异性分别为 79%和 100%。未检出的病灶摄取量和病灶体积较低。在配对比较中,基于患者(基于病灶)的 PERCIST(实体瘤的 PET 反应标准)可测量病灶的检测率为 89%(78%),而非 PERCIST 可测量病灶的检测率为 36%(22%)。

结论

在极快采集时间的情况下,病灶的可检测性和定量分析具有很大的前景。可能的应用场景可能包括晚期癌症患者的再分期,在这些患者中,评估总肿瘤负担可能比详细评估小的和低摄取的病灶更重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedc/9606065/aba4fd46c47b/259_2022_5901_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验