Nursing and Midwifery Care Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
Research Center for Evidence-Based Medicine, Iranian EBM Centre: A JBI Centre of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
BMC Med Imaging. 2024 Sep 11;24(1):238. doi: 10.1186/s12880-024-01417-y.
This systematic review aimed to evaluate the potential of deep learning algorithms for converting low-dose Positron Emission Tomography (PET) images to full-dose PET images in different body regions. A total of 55 articles published between 2017 and 2023 by searching PubMed, Web of Science, Scopus and IEEE databases were included in this review, which utilized various deep learning models, such as generative adversarial networks and UNET, to synthesize high-quality PET images. The studies involved different datasets, image preprocessing techniques, input data types, and loss functions. The evaluation of the generated PET images was conducted using both quantitative and qualitative methods, including physician evaluations and various denoising techniques. The findings of this review suggest that deep learning algorithms have promising potential in generating high-quality PET images from low-dose PET images, which can be useful in clinical practice.
本系统评价旨在评估深度学习算法在将不同身体部位的低剂量正电子发射断层扫描(PET)图像转换为全剂量 PET 图像方面的潜力。通过搜索 PubMed、Web of Science、Scopus 和 IEEE 数据库,共纳入了 2017 年至 2023 年间发表的 55 篇文章,这些文章利用了各种深度学习模型,如生成对抗网络和 UNET,来合成高质量的 PET 图像。这些研究涉及不同的数据集、图像预处理技术、输入数据类型和损失函数。使用定量和定性方法(包括医生评估和各种去噪技术)对生成的 PET 图像进行了评估。本综述的研究结果表明,深度学习算法在从低剂量 PET 图像生成高质量 PET 图像方面具有很大的潜力,这在临床实践中可能是有用的。