Suppr超能文献

不对称的组蛋白遗传:建立、识别和执行。

Asymmetric Histone Inheritance: Establishment, Recognition, and Execution.

机构信息

Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; email:

Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; email:

出版信息

Annu Rev Genet. 2022 Nov 30;56:113-143. doi: 10.1146/annurev-genet-072920-125226. Epub 2022 Jul 29.

Abstract

The discovery of biased histone inheritance in asymmetrically dividing male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.

摘要

有丝分裂后不对称分裂的雄性生殖干细胞中偏倚性组蛋白遗传的发现,证明了一种产生具有相同遗传物质的两个不同子细胞的方法。这一发现激发了在不同系统中进一步的研究,揭示了这种现象可能是一种广泛存在的产生细胞多样性的机制。尽管不对称组蛋白遗传的程度在不同系统中可能有所不同,但这种现象被提出可能分三个步骤发生:首先,在 DNA 复制过程中在姐妹染色单体之间建立组蛋白不对称性;其次,在有丝分裂过程中识别携带不对称组蛋白信息的姐妹染色单体;最后,在产生的子细胞中执行这种不对称性。通过整合来自不同真核系统的现有知识,本综述全面详细地比较和描述了可能有助于这三个步骤的已知染色质因子、有丝分裂机制成分和细胞周期调节剂。此外,还讨论了引入和调节可变组蛋白遗传模式的潜在机制,以及这些不同模式如何有助于多细胞生物中的细胞命运决定。

相似文献

1
Asymmetric Histone Inheritance: Establishment, Recognition, and Execution.
Annu Rev Genet. 2022 Nov 30;56:113-143. doi: 10.1146/annurev-genet-072920-125226. Epub 2022 Jul 29.
2
Mitotic drive in asymmetric epigenetic inheritance.
Biochem Soc Trans. 2022 Apr 29;50(2):675-688. doi: 10.1042/BST20200267.
3
Asymmetric Centromeres Differentially Coordinate with Mitotic Machinery to Ensure Biased Sister Chromatid Segregation in Germline Stem Cells.
Cell Stem Cell. 2019 Nov 7;25(5):666-681.e5. doi: 10.1016/j.stem.2019.08.014. Epub 2019 Sep 26.
4
Asymmetric distribution of histones during Drosophila male germline stem cell asymmetric divisions.
Chromosome Res. 2013 May;21(3):255-69. doi: 10.1007/s10577-013-9356-x.
5
CENP-C functions in centromere assembly, the maintenance of CENP-A asymmetry and epigenetic age in Drosophila germline stem cells.
PLoS Genet. 2021 May 20;17(5):e1009247. doi: 10.1371/journal.pgen.1009247. eCollection 2021 May.
7
Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement.
Nat Struct Mol Biol. 2019 Aug;26(8):732-743. doi: 10.1038/s41594-019-0269-z. Epub 2019 Jul 29.
8
Asymmetric Histone Inheritance in Asymmetrically Dividing Stem Cells.
Trends Genet. 2020 Jan;36(1):30-43. doi: 10.1016/j.tig.2019.10.004. Epub 2019 Nov 18.
9
All are equal, but some are more equal than others: Epigenetic regulation of germline stem cell fate in Drosophila melanogaster.
Genes Genet Syst. 2018 Feb 10;92(4):163-172. doi: 10.1266/ggs.16-00057. Epub 2017 Jun 30.
10
Chromosome-specific nonrandom sister chromatid segregation during stem-cell division.
Nature. 2013 Jun 13;498(7453):251-4. doi: 10.1038/nature12106. Epub 2013 May 5.

引用本文的文献

2
Always on the Move: Overview on Chromatin Dynamics within Nuclear Processes.
Biochemistry. 2025 May 20;64(10):2138-2153. doi: 10.1021/acs.biochem.5c00114. Epub 2025 May 1.
4
Molecular mechanism of parental H3/H4 recycling at a replication fork.
Nat Commun. 2024 Nov 2;15(1):9485. doi: 10.1038/s41467-024-53187-4.
5
Helical coiled nucleosome chromosome architectures during cell cycle progression.
Proc Natl Acad Sci U S A. 2024 Oct 22;121(43):e2410584121. doi: 10.1073/pnas.2410584121. Epub 2024 Oct 14.
6
Modulating DNA Polα Enhances Cell Reprogramming Across Species.
bioRxiv. 2024 Sep 20:2024.09.19.613993. doi: 10.1101/2024.09.19.613993.
7
The fork protection complex promotes parental histone recycling and epigenetic memory.
Cell. 2024 Sep 5;187(18):5029-5047.e21. doi: 10.1016/j.cell.2024.07.017. Epub 2024 Aug 1.
8
Reduced Levels of Lagging Strand Polymerases Shape Stem Cell Chromatin.
bioRxiv. 2024 Apr 29:2024.04.26.591383. doi: 10.1101/2024.04.26.591383.
9
Mitotic inheritance of genetic and epigenetic information via the histone H3.1 variant.
Curr Opin Plant Biol. 2023 Oct;75:102401. doi: 10.1016/j.pbi.2023.102401. Epub 2023 Jun 9.

本文引用的文献

3
Complete genomic and epigenetic maps of human centromeres.
Science. 2022 Apr;376(6588):eabl4178. doi: 10.1126/science.abl4178. Epub 2022 Apr 1.
4
A monoastral mitotic spindle determines lineage fate and position in the mouse embryo.
Nat Cell Biol. 2022 Feb;24(2):155-167. doi: 10.1038/s41556-021-00826-3. Epub 2022 Jan 31.
6
Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division.
Nat Commun. 2021 Oct 12;12(1):5941. doi: 10.1038/s41467-021-26203-0.
7
Deposition Bias of Chromatin Proteins Inverts under DNA Replication Stress Conditions.
ACS Chem Biol. 2021 Nov 19;16(11):2193-2201. doi: 10.1021/acschembio.1c00321. Epub 2021 Sep 30.
9
Characterization of histone inheritance patterns in the Drosophila female germline.
EMBO Rep. 2021 Jul 5;22(7):e51530. doi: 10.15252/embr.202051530. Epub 2021 May 25.
10
CENP-C functions in centromere assembly, the maintenance of CENP-A asymmetry and epigenetic age in Drosophila germline stem cells.
PLoS Genet. 2021 May 20;17(5):e1009247. doi: 10.1371/journal.pgen.1009247. eCollection 2021 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验