Suppr超能文献

人类着丝粒的完整基因组和表观基因组图谱。

Complete genomic and epigenetic maps of human centromeres.

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.

Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA.

出版信息

Science. 2022 Apr;376(6588):eabl4178. doi: 10.1126/science.abl4178. Epub 2022 Apr 1.

Abstract

Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.9 megabases). Detailed maps of these regions revealed multimegabase structural rearrangements, including in active centromeric repeat arrays. Analysis of centromere-associated sequences uncovered a strong relationship between the position of the centromere and the evolution of the surrounding DNA through layered repeat expansions. Furthermore, comparisons of chromosome X centromeres across a diverse panel of individuals illuminated high degrees of structural, epigenetic, and sequence variation in these complex and rapidly evolving regions.

摘要

现有的人类基因组组装几乎完全排除了着丝粒内部和附近的重复序列,这限制了我们对其组织、进化和功能的理解,其中包括促进正确的染色体分离。现在,一个完整的端粒到端粒的人类基因组组装(T2T-CHM13)使我们能够全面描述着丝粒周围和着丝粒重复序列,这些序列构成基因组的 6.2%(189.9 兆碱基)。这些区域的详细图谱显示了多兆碱基的结构重排,包括在活跃的着丝粒重复序列阵列中。对着丝粒相关序列的分析揭示了着丝粒的位置与周围 DNA 进化之间的强关系,这种关系是通过层状重复扩展形成的。此外,对来自不同个体的染色体 X 着丝粒的比较揭示了这些复杂和快速进化区域在结构、表观遗传和序列变异方面的高度多样性。

相似文献

1
Complete genomic and epigenetic maps of human centromeres.
Science. 2022 Apr;376(6588):eabl4178. doi: 10.1126/science.abl4178. Epub 2022 Apr 1.
3
Epigenetic patterns in a complete human genome.
Science. 2022 Apr;376(6588):eabj5089. doi: 10.1126/science.abj5089. Epub 2022 Apr 1.
4
Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function.
Genes (Basel). 2020 Aug 10;11(8):912. doi: 10.3390/genes11080912.
5
From telomere to telomere: The transcriptional and epigenetic state of human repeat elements.
Science. 2022 Apr;376(6588):eabk3112. doi: 10.1126/science.abk3112. Epub 2022 Apr 1.
6
Centromere reference models for human chromosomes X and Y satellite arrays.
Genome Res. 2014 Apr;24(4):697-707. doi: 10.1101/gr.159624.113. Epub 2014 Feb 5.
7
The Promises and Challenges of Genomic Studies of Human Centromeres.
Prog Mol Subcell Biol. 2017;56:285-304. doi: 10.1007/978-3-319-58592-5_12.
9
Structural and functional dynamics of human centromeric chromatin.
Annu Rev Genomics Hum Genet. 2006;7:301-13. doi: 10.1146/annurev.genom.7.080505.115613.
10
The evolutionary life cycle of the resilient centromere.
Chromosoma. 2012 Aug;121(4):327-40. doi: 10.1007/s00412-012-0369-6. Epub 2012 Apr 11.

引用本文的文献

1
DNA methylation influences human centromere positioning and function.
Nat Genet. 2025 Sep 4. doi: 10.1038/s41588-025-02324-w.
4
G-quadruplex stabilization induces DNA breaks in pericentromeric repetitive DNA sequences in B lymphocytes.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2506939122. doi: 10.1073/pnas.2506939122. Epub 2025 Aug 20.
5
Tracing the evolution of sequencing into the era of genomic medicine.
Nat Rev Genet. 2025 Aug 15. doi: 10.1038/s41576-025-00884-5.
7
Centromeres drive and take a break.
Chromosome Res. 2025 Aug 4;33(1):17. doi: 10.1007/s10577-025-09777-z.
10
Accurate, Scalable Structural Variant Genotyping in Complex Genomes at Population Scales.
Mol Biol Evol. 2025 Jul 30;42(8). doi: 10.1093/molbev/msaf180.

本文引用的文献

1
High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios.
Cell. 2022 Sep 1;185(18):3426-3440.e19. doi: 10.1016/j.cell.2022.08.004.
2
A classical revival: Human satellite DNAs enter the genomics era.
Semin Cell Dev Biol. 2022 Aug;128:2-14. doi: 10.1016/j.semcdb.2022.04.012. Epub 2022 Apr 27.
3
DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide.
Nat Methods. 2022 Jun;19(6):711-723. doi: 10.1038/s41592-022-01475-6. Epub 2022 Apr 8.
4
Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies.
Nat Methods. 2022 Jun;19(6):687-695. doi: 10.1038/s41592-022-01440-3. Epub 2022 Mar 31.
5
A complete reference genome improves analysis of human genetic variation.
Science. 2022 Apr;376(6588):eabl3533. doi: 10.1126/science.abl3533. Epub 2022 Apr 1.
6
From telomere to telomere: The transcriptional and epigenetic state of human repeat elements.
Science. 2022 Apr;376(6588):eabk3112. doi: 10.1126/science.abk3112. Epub 2022 Apr 1.
7
The complete sequence of a human genome.
Science. 2022 Apr;376(6588):44-53. doi: 10.1126/science.abj6987. Epub 2022 Mar 31.
8
Segmental duplications and their variation in a complete human genome.
Science. 2022 Apr;376(6588):eabj6965. doi: 10.1126/science.abj6965. Epub 2022 Apr 1.
9
Epigenetic patterns in a complete human genome.
Science. 2022 Apr;376(6588):eabj5089. doi: 10.1126/science.abj5089. Epub 2022 Apr 1.
10
StainedGlass: interactive visualization of massive tandem repeat structures with identity heatmaps.
Bioinformatics. 2022 Mar 28;38(7):2049-2051. doi: 10.1093/bioinformatics/btac018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验