Suppr超能文献

利用柠檬酸银纳米岛的表面增强红外吸收光谱结合人工神经网络鉴定牛奶质量和掺假。

Identification of milk quality and adulteration by surface-enhanced infrared absorption spectroscopy coupled to artificial neural networks using citrate-capped silver nanoislands.

机构信息

Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt.

Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo, Egypt.

出版信息

Mikrochim Acta. 2022 Jul 29;189(8):301. doi: 10.1007/s00604-022-05393-4.

Abstract

Milk is one of the most important multicomponent superfoods owing to its rich macronutrient composition. It requires quality control at all the production stages from the farm to the finished products. A localized surface plasmon resonance optical sensor based on a citrate-capped silver nanoparticle (Cit-AgNP)-coated glass substrate was developed. The fabrication of such sensors involved a single-step synthesis of Cit-AgNPs followed by surface modification of glass slides to be coated with the nanoparticles. The scanning electron microscope micrographs demonstrated that the nanoparticles formed monolayer islands on glass slides. The developed surface-enhanced infrared absorption spectroscopy (SEIRA) sensor was coupled to artificial neural networking (ANN) for the qualitative differentiation between cow, camel, goat, buffalo, and infants' formula powdered milk types. Moreover, it can be used for the quantitative determination of the main milk components such as fat, casein, urea, and lactose in each milk type. The qualitative results showed that the obtained FTIR spectra of cow and buffalo milk have high similarity, whereas camel milk resembled infant formula powdered milk. The most difference in FTIR characteristics was evidenced in the case of goat milk. The developed sensor adds several advantages over the traditional techniques of milk analysis using MilkoScan™ such as less generated waste, elimination of pre-treatment steps, minimal sample volume, low operation time, and on-site analysis.

摘要

牛奶是一种最重要的多组分超级食品,因为它含有丰富的宏量营养素。从农场到成品,都需要对其进行质量控制。我们开发了一种基于柠檬酸封端的银纳米粒子(Cit-AgNP)涂层玻璃基底的局部表面等离子体共振光学传感器。这种传感器的制造涉及一步合成Cit-AgNPs,然后对玻片进行表面修饰,以涂覆纳米粒子。扫描电子显微镜照片显示,纳米粒子在玻片上形成了单层岛。所开发的表面增强红外吸收光谱(SEIRA)传感器与人工神经网络(ANN)耦合,用于定性区分牛奶、骆驼奶、山羊奶、水牛奶和婴儿配方奶粉。此外,它还可以用于定量测定每种牛奶类型中的主要牛奶成分,如脂肪、酪蛋白、尿素和乳糖。定性结果表明,牛和水牛牛奶的获得的 FTIR 光谱具有高度相似性,而骆驼奶类似于婴儿配方奶粉。山羊奶在 FTIR 特征上的差异最大。与传统的 MilkoScan™牛奶分析技术相比,该传感器具有几个优势,例如产生的废物更少、消除预处理步骤、最小样品量、较短的操作时间和现场分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d03f/9338147/60aea1602fbd/604_2022_5393_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验