Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.
Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA.
J Gen Intern Med. 2023 Feb;38(2):351-360. doi: 10.1007/s11606-022-07736-6. Epub 2022 Jul 29.
Fifty percent of people living with dementia are undiagnosed. The electronic health record (EHR) Risk of Alzheimer's and Dementia Assessment Rule (eRADAR) was developed to identify older adults at risk of having undiagnosed dementia using routinely collected clinical data.
To externally validate eRADAR in two real-world healthcare systems, including examining performance over time and by race/ethnicity.
Retrospective cohort study PARTICIPANTS: 129,315 members of Kaiser Permanente Washington (KPWA), an integrated health system providing insurance coverage and medical care, and 13,444 primary care patients at University of California San Francisco Health (UCSF), an academic medical system, aged 65 years or older without prior EHR documentation of dementia diagnosis or medication.
Performance of eRADAR scores, calculated annually from EHR data (including vital signs, diagnoses, medications, and utilization in the prior 2 years), for predicting EHR documentation of incident dementia diagnosis within 12 months.
A total of 7631 dementia diagnoses were observed at KPWA (11.1 per 1000 person-years) and 216 at UCSF (4.6 per 1000 person-years). The area under the curve was 0.84 (95% confidence interval: 0.84-0.85) at KPWA and 0.79 (0.76-0.82) at UCSF. Using the 90 percentile as the cut point for identifying high-risk patients, sensitivity was 54% (53-56%) at KPWA and 44% (38-51%) at UCSF. Performance was similar over time, including across the transition from International Classification of Diseases, version 9 (ICD-9) to ICD-10 codes, and across racial/ethnic groups (though small samples limited precision in some groups).
eRADAR showed strong external validity for detecting undiagnosed dementia in two health systems with different patient populations and differential availability of external healthcare data for risk calculations. In this study, eRADAR demonstrated generalizability from a research sample to real-world clinical populations, transportability across health systems, robustness to temporal changes in healthcare, and similar performance across larger racial/ethnic groups.
有 50%的痴呆症患者未被诊断。电子健康记录(EHR)阿尔茨海默病和痴呆风险评估规则(eRADAR)的开发是为了使用常规收集的临床数据来识别有未被诊断的痴呆风险的老年人。
在两个真实的医疗保健系统中对 eRADAR 进行外部验证,包括检查随时间推移的表现和按种族/民族划分的表现。
回顾性队列研究
129315 名 Kaiser Permanente Washington(KPWA)的成员,这是一个提供保险覆盖和医疗保健的综合健康系统,以及 13444 名加州大学旧金山分校健康中心(UCSF)的初级保健患者,年龄在 65 岁或以上,之前的 EHR 记录中没有痴呆症诊断或药物治疗的记录。
每年从 EHR 数据(包括生命体征、诊断、药物和前 2 年的使用情况)中计算的 eRADAR 评分对预测在 12 个月内 EHR 记录的新发痴呆症诊断的表现。
在 KPWA 共观察到 7631 例痴呆症诊断(每 1000 人年 11.1 例),在 UCSF 共观察到 216 例(每 1000 人年 4.6 例)。曲线下面积在 KPWA 为 0.84(95%置信区间:0.84-0.85),在 UCSF 为 0.79(0.76-0.82)。使用 90 百分位数作为识别高危患者的切点,在 KPWA 的敏感性为 54%(53-56%),在 UCSF 的敏感性为 44%(38-51%)。随着时间的推移,表现相似,包括从国际疾病分类,第 9 版(ICD-9)到 ICD-10 代码的转变,以及在不同的种族/民族群体中(尽管小样本限制了某些群体的精度)。
eRADAR 在两个具有不同患者人群和外部医疗保健数据可用于风险计算的差异的医疗系统中对未被诊断的痴呆症具有很强的外部有效性。在这项研究中,eRADAR 从研究样本到真实的临床人群表现出了可推广性,在不同的医疗系统中表现出了可转移性,对医疗保健的时间变化具有稳健性,并且在更大的种族/民族群体中表现相似。