Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, HPM H 25, Otto Stern Weg 2, 8093 Zurich, Switzerland.
Biochim Biophys Acta Gene Regul Mech. 2022 Jul;1865(5):194845. doi: 10.1016/j.bbagrm.2022.194845. Epub 2022 Jul 28.
Posttranslational modification of histones plays a critical role in regulation of gene expression. These modifications include methylation and acetylation that work in combination to establish transcriptionally active or repressive chromatin states. Histone methyltransferases (HMTs) often have variable levels of activity in vitro depending on the form of substrate used. For example, certain HMTs prefer nucleosomes extracted from human or chicken cells as substrate compared to recombinant nucleosomes reconstituted from bacterially produced histones. We considered that pre-existing histone modifications in the extracted nucleosomes can affect the efficiency of catalysis by HMTs, suggesting functional cross-talk between histone-modifying enzymes within a complex network of interdependent activities. Here we systematically investigated the effect of nucleosome acetylation by EP300, GCN5L2 (KAT2A) and MYST1 (MOF) on histone 3 lysine 4 (H3K4), H3K9 and H4K20 methylation of nucleosomes by nine HMTs (MLL1, MLL3, SET1B, G9a, SETDB1, SUV39H1, SUV39H2, SUV420H1 and SUV420H2) in vitro. Our full kinetic characterization data indicate that site-specific acetylation of nucleosomal histones by specific acetyltransferases can create nucleosomes that are better substrates for specific HMTs. This includes significant increases in catalytic efficiencies of SETDB1, G9a and SUV420H2 after nucleosome acetylation in vitro.
组蛋白的翻译后修饰在基因表达调控中起着关键作用。这些修饰包括甲基化和乙酰化,它们协同作用以建立转录活跃或抑制的染色质状态。组蛋白甲基转移酶(HMTs)在体外的活性水平通常因所使用的底物形式而异。例如,某些 HMTs 更喜欢用人或鸡细胞提取的核小体作为底物,而不是由细菌产生的组蛋白重新组成的重组核小体。我们认为,提取的核小体中预先存在的组蛋白修饰可以影响 HMTs 的催化效率,这表明组蛋白修饰酶之间存在功能串扰,形成相互依存的复杂网络。在这里,我们系统地研究了 EP300、GCN5L2(KAT2A)和 MYST1(MOF)对核小体乙酰化对 9 种 HMT(MLL1、MLL3、SET1B、G9a、SETDB1、SUV39H1、SUV39H2、SUV420H1 和 SUV420H2)对核小体 H3K4、H3K9 和 H4K20 甲基化的影响。我们的全面动力学特征数据表明,特定乙酰转移酶对核小体组蛋白的特异性乙酰化可以产生更适合特定 HMT 的核小体底物。这包括 SETDB1、G9a 和 SUV420H2 的催化效率在体外核小体乙酰化后显著提高。