Suppr超能文献

分位数 SEIR 模型与数据驱动的奥密克戎变异株 COVID-19 动力学预测。

Fractional SEIR model and data-driven predictions of COVID-19 dynamics of Omicron variant.

机构信息

Department of Mathematics, Shanghai University, 99 Shangda Road, Shanghai 200444, China.

Division of Applied Mathematics, Brown University, 170 Hope Street, Providence, Rhode Island 02906, USA.

出版信息

Chaos. 2022 Jul;32(7):071101. doi: 10.1063/5.0099450.

Abstract

We study the dynamic evolution of COVID-19 caused by the Omicron variant via a fractional susceptible-exposed-infected-removed (SEIR) model. Preliminary data suggest that the symptoms of Omicron infection are not prominent and the transmission is, therefore, more concealed, which causes a relatively slow increase in the detected cases of the newly infected at the beginning of the pandemic. To characterize the specific dynamics, the Caputo-Hadamard fractional derivative is adopted to refine the classical SEIR model. Based on the reported data, we infer the fractional order and time-dependent parameters as well as unobserved dynamics of the fractional SEIR model via fractional physics-informed neural networks. Then, we make short-time predictions using the learned fractional SEIR model.

摘要

我们通过分数易感-暴露-感染-清除(SEIR)模型研究了由奥密克戎变异引起的 COVID-19 的动态演变。初步数据表明,奥密克戎感染的症状并不明显,因此传播更为隐匿,这导致在疫情初期新感染病例的检测数量增长相对缓慢。为了描述特定的动力学,我们采用 Caputo-Hadamard 分数导数来改进经典的 SEIR 模型。基于报告的数据,我们通过分数物理启发神经网络推断分数 SEIR 模型的分数阶和时变参数以及未观测到的动力学。然后,我们使用学习到的分数 SEIR 模型进行短期预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验