Suppr超能文献

SEAHIR:一种 COVID-19 专用 compartmental 模型。

SEAHIR: A Specialized Compartmental Model for COVID-19.

机构信息

Smart Dubai Department, Dubai Design District, Building 1A, Dubai P.O. Box 555995, United Arab Emirates.

College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Healthcare City, Dubai P.O. Box 505055, United Arab Emirates.

出版信息

Int J Environ Res Public Health. 2021 Mar 6;18(5):2667. doi: 10.3390/ijerph18052667.

Abstract

The SEIR (Susceptible-Exposed-Infected-Removed) model is widely used in epidemiology to mathematically model the spread of infectious diseases with incubation periods. However, the SEIR model prototype is generic and not able to capture the unique nature of a novel viral pandemic such as SARS-CoV-2. We have developed and tested a specialized version of the SEIR model, called SEAHIR (Susceptible-Exposed-Asymptomatic-Hospitalized-Isolated-Removed) model. This proposed model is able to capture the unique dynamics of the COVID-19 outbreak including further dividing the Infected compartment into: (1) "Asymptomatic", (2) "Isolated" and (3) "Hospitalized" to delineate the transmission specifics of each compartment and forecast healthcare requirements. The model also takes into consideration the impact of non-pharmaceutical interventions such as physical distancing and different testing strategies on the number of confirmed cases. We used a publicly available dataset from the United Arab Emirates (UAE) as a case study to optimize the main parameters of the model and benchmarked it against the historical number of cases. The SEAHIR model was used by decision-makers in Dubai's COVID-19 Command and Control Center to make timely decisions on developing testing strategies, increasing healthcare capacity, and implementing interventions to contain the spread of the virus. The novel six-compartment SEAHIR model could be utilized by decision-makers and researchers in other countries for current or future pandemics.

摘要

SEIR(易感-暴露-感染-清除)模型广泛应用于流行病学,用于对具有潜伏期的传染病进行数学建模。然而,SEIR 模型原型是通用的,无法捕捉 SARS-CoV-2 等新型病毒性大流行的独特性质。我们已经开发并测试了 SEIR 模型的一个专门版本,称为 SEAHIR(易感-暴露-无症状-住院-隔离-清除)模型。该模型能够捕捉 COVID-19 疫情的独特动态,包括进一步将感染人群分为:(1)“无症状”,(2)“隔离”和(3)“住院”,以描绘每个人群的传播细节,并预测医疗保健需求。该模型还考虑了非药物干预措施(如身体距离和不同的检测策略)对确诊病例数量的影响。我们使用阿拉伯联合酋长国(UAE)的一个公开数据集作为案例研究,对模型的主要参数进行了优化,并将其与历史病例数进行了基准测试。SEAHIR 模型被迪拜 COVID-19 指挥和控制中心的决策者用于及时制定检测策略、增加医疗保健能力以及实施干预措施以控制病毒传播。新型六人群 SEAHIR 模型可被其他国家的决策者和研究人员用于当前或未来的大流行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3df1/7967501/f4412ef6448e/ijerph-18-02667-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验