Suppr超能文献

通过农艺生物强化羽衣甘蓝芽菜增加维生素 C。

Increasing vitamin C through agronomic biofortification of arugula microgreens.

机构信息

Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.

Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA.

出版信息

Sci Rep. 2022 Jul 30;12(1):13093. doi: 10.1038/s41598-022-17030-4.

Abstract

Vitamin C (Vit C) is an essential micronutrient and antioxidant for human health. Unfortunately, Vit C cannot be produced in humans and is ingested through diet while severe deficiencies can lead to scurvy. However, consumption is often inconsistent, and foods vary in Vit C concentrations. Biofortification, the practice of increasing micronutrient or mineral concentrations, can improve the nutritional quality of crops and allow for more consistent dietary levels of these nutrients. Of the three leading biofortification practices (i.e., conventional, transgenic, and agronomical), the least explored approach to increase Vit C in microgreens is agronomically, especially through the supplemental application of ascorbic acid. In this study, biofortification of Vit C in microgreens through supplemental ascorbic acid was attempted and proven achievable. Arugula (Eruca sativa 'Astro') microgreens were irrigated with four concentrations of ascorbic acid and a control. Total Vit C (T-AsA) and ascorbic acid increased in microgreens as supplementary concentrations increased. In conclusion, biofortification of Vit C in microgreens through supplemental ascorbic acid is achievable, and consumption of these bio-fortified microgreens could help fulfill the daily Vit C requirements for humans, thereby reducing the need for supplemental vitamins.

摘要

维生素 C(Vit C)是人类健康所必需的微量营养素和抗氧化剂。不幸的是,人体无法自行合成 Vit C,只能通过饮食摄取,而严重缺乏 Vit C 会导致坏血病。然而,人们的摄入量往往不一致,而且不同食物中 Vit C 的浓度也有所差异。生物强化是一种提高微量营养素或矿物质浓度的实践,可以改善作物的营养价值,并使这些营养素在饮食中的含量更加稳定。在三种主要的生物强化实践(即常规、转基因和农艺学)中,通过补充施用抗坏血酸来增加微型蔬菜中 Vit C 的方法是最不被探索的,特别是在农业方面。在这项研究中,通过补充抗坏血酸来实现微型蔬菜的 Vit C 生物强化,并证明是可行的。用四种浓度的抗坏血酸和对照处理对芝麻菜(Eruca sativa 'Astro')微型蔬菜进行灌溉。随着补充浓度的增加,微型蔬菜中的总 Vit C(T-AsA)和抗坏血酸含量增加。总之,通过补充抗坏血酸来实现微型蔬菜的 Vit C 生物强化是可行的,食用这些经过生物强化的微型蔬菜可以帮助满足人类每日的 Vit C 需求,从而减少对补充维生素的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9d6/9338947/6afe786ee7eb/41598_2022_17030_Fig1_HTML.jpg

相似文献

1
Increasing vitamin C through agronomic biofortification of arugula microgreens.
Sci Rep. 2022 Jul 30;12(1):13093. doi: 10.1038/s41598-022-17030-4.
2
Simultaneous biofortification of vitamin C and mineral nutrients in arugula microgreens.
Food Chem. 2024 May 15;440:138180. doi: 10.1016/j.foodchem.2023.138180. Epub 2023 Dec 14.
3
Vitamin C biofortification of broccoli microgreens and resulting effects on nutrient composition.
Front Plant Sci. 2023 Mar 3;14:1145992. doi: 10.3389/fpls.2023.1145992. eCollection 2023.
5
Production of selenium-biofortified microgreens from selenium-enriched seeds of basil.
J Sci Food Agric. 2019 Sep;99(12):5601-5605. doi: 10.1002/jsfa.9826. Epub 2019 Jun 25.
7
A decade of improving nutritional quality of horticultural crops agronomically (2012-2022): A systematic literature review.
Sci Total Environ. 2024 Feb 10;911:168665. doi: 10.1016/j.scitotenv.2023.168665. Epub 2023 Nov 20.
9
Microgreens Biometric and Fluorescence Response to Iron (Fe) Biofortification.
Int J Mol Sci. 2022 Nov 22;23(23):14553. doi: 10.3390/ijms232314553.
10
Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
World Rev Nutr Diet. 2018;118:112-122. doi: 10.1159/000484342. Epub 2018 Apr 13.

引用本文的文献

2
Biofortification as a solution for addressing nutrient deficiencies and malnutrition.
Heliyon. 2024 May 1;10(9):e30595. doi: 10.1016/j.heliyon.2024.e30595. eCollection 2024 May 15.
4
Vitamin C biofortification of broccoli microgreens and resulting effects on nutrient composition.
Front Plant Sci. 2023 Mar 3;14:1145992. doi: 10.3389/fpls.2023.1145992. eCollection 2023.
5
Microgreens-A Comprehensive Review of Bioactive Molecules and Health Benefits.
Molecules. 2023 Jan 15;28(2):867. doi: 10.3390/molecules28020867.

本文引用的文献

1
Potassium in plants: Growth regulation, signaling, and environmental stress tolerance.
Plant Physiol Biochem. 2022 Feb 1;172:56-69. doi: 10.1016/j.plaphy.2022.01.001. Epub 2022 Jan 7.
3
Chlorophyll hormesis: Are chlorophylls major components of stress biology in higher plants?
Sci Total Environ. 2020 Jul 15;726:138637. doi: 10.1016/j.scitotenv.2020.138637. Epub 2020 Apr 13.
5
Production of selenium-biofortified microgreens from selenium-enriched seeds of basil.
J Sci Food Agric. 2019 Sep;99(12):5601-5605. doi: 10.1002/jsfa.9826. Epub 2019 Jun 25.
6
Biofortification of common buckwheat microgreens and seeds with different forms of selenium and iodine.
J Sci Food Agric. 2019 Jul;99(9):4353-4362. doi: 10.1002/jsfa.9669. Epub 2019 Apr 8.
8
Vitamin C: the known and the unknown and Goldilocks.
Oral Dis. 2016 Sep;22(6):463-93. doi: 10.1111/odi.12446. Epub 2016 Apr 14.
9
L-dehydroascorbic acid can substitute l-ascorbic acid as dietary vitamin C source in guinea pigs.
Redox Biol. 2016 Apr;7:8-13. doi: 10.1016/j.redox.2015.11.003. Epub 2015 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验