School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia; ARC Centre of Excellence in Mathematical and Statistical Frontiers (ACEMS), Brisbane, QLD, Australia.
Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia.
Biol Psychol. 2022 Sep;173:108403. doi: 10.1016/j.biopsycho.2022.108403. Epub 2022 Jul 28.
To better understand the relationships between neurophysiology, cognitive function and psychopathology risk in adolescence there is value in identifying data-driven subgroups based on measurements of brain activity and function, and then comparing cognition and mental health between such subgroups.
We developed a flexible and scaleable multi-stage analysis pipeline to identify data-driven clusters of 12-year-olds (M = 12.64, SD = 0.32) based on frequency characteristics calculated from resting state, eyes-closed electroencephalography (EEG) recordings. For this preliminary cross-sectional study, EEG data was collected from 59 individuals in the Longitudinal Adolescent Brain Study (LABS) being undertaken in Queensland, Australia. Applying multiple unsupervised clustering algorithms to these EEG features, we identified well-separated subgroups of individuals. To study patterns of difference in cognitive function and mental health symptoms between clusters, we applied Bayesian regression models to probabilistically identify differences in these measures between clusters.
We identified 5 core clusters associated with distinct subtypes of resting state EEG frequency content. Bayesian models demonstrated substantial differences in psychological distress, sleep quality and cognitive function between clusters. By examining associations between neurophysiology and health measures across clusters, we have identified preliminary risk and protective profiles linked to EEG characteristics.
This method provides the potential to identify neurophysiological subgroups of adolescents in the general population based on resting state EEG, and associated patterns of health and cognition that are not observed at the whole group level. This approach offers potential utility in clinical risk prediction for mental and cognitive health outcomes throughout adolescent development.
为了更好地理解神经生理学、认知功能和青少年精神病理学风险之间的关系,基于大脑活动和功能的测量值,识别基于数据的亚组,并比较这些亚组之间的认知和心理健康情况,具有重要意义。
我们开发了一种灵活且可扩展的多阶段分析管道,根据静息状态下闭眼脑电图(EEG)记录的频率特征,对 12 岁儿童(M=12.64,SD=0.32)进行数据驱动的聚类分析。对于这项初步的横断面研究,我们从澳大利亚昆士兰州正在进行的纵向青少年大脑研究(LABS)中收集了 59 名个体的 EEG 数据。我们将这些 EEG 特征应用于多种无监督聚类算法,以识别个体的聚类。为了研究认知功能和心理健康症状在聚类之间的差异模式,我们应用贝叶斯回归模型来概率识别这些聚类之间这些测量值的差异。
我们确定了与静息状态 EEG 频率内容的不同亚型相关的 5 个核心聚类。贝叶斯模型表明,在心理困扰、睡眠质量和认知功能方面,聚类之间存在显著差异。通过检查跨聚类的神经生理学和健康指标之间的关联,我们已经确定了与 EEG 特征相关的初步风险和保护特征。
该方法有可能根据静息状态 EEG 识别普通人群中的青少年神经生理学亚组,以及在整个群体水平上观察不到的与健康和认知相关的模式。这种方法为整个青少年发展过程中精神和认知健康结果的临床风险预测提供了潜在的应用价值。