Forbes Owen, Santos-Fernandez Edgar, Wu Paul Pao-Yen, Mengersen Kerrie
QUT Centre for Data Science, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
PLoS One. 2025 Jun 27;20(6):e0326598. doi: 10.1371/journal.pone.0326598. eCollection 2025.
Functional data analysis (FDA) enables modelling and interpretation of data represented as functions over a continuum like time, space, or frequency. This paper introduces the flawless analysis framework (FunctionaL Analysis Within LatEnt StateS), a nested FDA framework for analysing functional time series data. It provides comprehensive insights into the interplay between latent state characteristics, state occupancy dynamics, and functional attributes within states, while maintaining interpretability at each level. Applying flawless to functional time series of power spectral densities from electroencephalography (EEG) data from the Healthy Brain Network, we explore functional characteristics of resting state brain activity in n = 503 early adolescents aged 9 - 15 ([Formula: see text], SD = 1.7). We identify four functional latent states associated with variations in psychopathology and cognitive function. Bayesian regression models reveal important associations between the dynamics of latent state occupancy, functional traits within states, and relevant health measures. The integration of multiple FDA tools offers rich insights into functional and time-frequency characteristics of longitudinal data. For neuroscientific data this requires fewer assumptions about oscillatory peak frequencies, and captures more detailed frequency domain characteristics. flawless offers utility for novel and sophisticated insights into functional time series data across a range of areas for research and practice.
功能数据分析(FDA)能够对以时间、空间或频率等连续统上的函数形式表示的数据进行建模和解释。本文介绍了完美分析框架(潜在状态内的功能分析),这是一种用于分析功能时间序列数据的嵌套FDA框架。它全面洞察了潜在状态特征、状态占用动态以及状态内功能属性之间的相互作用,同时在每个层面都保持了可解释性。将完美分析框架应用于来自健康大脑网络的脑电图(EEG)数据的功率谱密度功能时间序列,我们探索了n = 503名年龄在9至15岁(平均年龄[公式:见正文],标准差= 1.7)的青少年静息态大脑活动的功能特征。我们识别出与精神病理学和认知功能变化相关的四种功能潜在状态。贝叶斯回归模型揭示了潜在状态占用动态、状态内功能特征与相关健康指标之间的重要关联。多种FDA工具的整合为纵向数据的功能和时频特征提供了丰富的见解。对于神经科学数据而言,这需要对振荡峰值频率做出更少的假设,并捕捉更详细的频域特征。完美分析框架为跨一系列研究和实践领域的功能时间序列数据提供了新颖而深入的见解。