Suppr超能文献

在目标导向注视转移的卷积/多层感知器网络模型中整合以物体为中心和以自我为中心的视觉信息。

Integration of allocentric and egocentric visual information in a convolutional/multilayer perceptron network model of goal-directed gaze shifts.

作者信息

Abedi Khoozani Parisa, Bharmauria Vishal, Schütz Adrian, Wildes Richard P, Crawford J Douglas

机构信息

Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario M3J 1P3, Canada.

Department of Neurophysics Phillips-University Marburg, Marburg 35037, Germany.

出版信息

Cereb Cortex Commun. 2022 Jul 8;3(3):tgac026. doi: 10.1093/texcom/tgac026. eCollection 2022.

Abstract

Allocentric (landmark-centered) and egocentric (eye-centered) visual codes are fundamental for spatial cognition, navigation, and goal-directed movement. Neuroimaging and neurophysiology suggest these codes are initially segregated, but then reintegrated in frontal cortex for movement control. We created and validated a theoretical framework for this process using physiologically constrained inputs and outputs. To implement a general framework, we integrated a convolutional neural network (CNN) of the visual system with a multilayer perceptron (MLP) model of the sensorimotor transformation. The network was trained on a task where a landmark shifted relative to the saccade target. These visual parameters were input to the CNN, the CNN output and initial gaze position to the MLP, and a decoder transformed MLP output into saccade vectors. Decoded saccade output replicated idealized training sets with various allocentric weightings and actual monkey data where the landmark shift had a partial influence (  = 0.8). Furthermore, MLP output units accurately simulated prefrontal response field shifts recorded from monkeys during the same paradigm. In summary, our model replicated both the general properties of the visuomotor transformations for gaze and specific experimental results obtained during allocentric-egocentric integration, suggesting it can provide a general framework for understanding these and other complex visuomotor behaviors.

摘要

以环境为中心(以地标为中心)和以自我为中心(以眼睛为中心)的视觉编码对于空间认知、导航和目标导向运动至关重要。神经影像学和神经生理学研究表明,这些编码最初是分离的,但随后在额叶皮层重新整合以进行运动控制。我们使用生理约束的输入和输出为此过程创建并验证了一个理论框架。为了实现一个通用框架,我们将视觉系统的卷积神经网络(CNN)与感觉运动转换的多层感知器(MLP)模型集成在一起。该网络在一个地标相对于扫视目标移动的任务上进行训练。这些视觉参数被输入到CNN中,CNN的输出和初始注视位置被输入到MLP中,并且一个解码器将MLP的输出转换为扫视向量。解码后的扫视输出复制了具有各种以环境为中心加权的理想化训练集以及地标移动具有部分影响( = 0.8)的实际猴子数据。此外,MLP输出单元准确地模拟了在相同范式下从猴子记录的前额叶反应场转移。总之,我们的模型复制了注视的视觉运动转换的一般特性以及在以环境为中心 - 以自我为中心整合过程中获得的特定实验结果,表明它可以为理解这些以及其他复杂的视觉运动行为提供一个通用框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6395/9334293/9a2b100d1f20/tgac026f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验