Suppr超能文献

基于机器学习模型的心脏病人识别。

Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models.

机构信息

Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee 247667, India.

School of Computing, DIT University, Dehradun 248009, Uttarakhand, India.

出版信息

Comput Intell Neurosci. 2022 Jul 20;2022:5882144. doi: 10.1155/2022/5882144. eCollection 2022.

Abstract

Chronic diseases are the most severe health concern today, and heart disease is one of them. Coronary artery disease (CAD) affects blood flow to the heart, and it is the most common type of heart disease which causes a heart attack. High blood pressure, high cholesterol, and smoking significantly increase the risk of heart disease. To estimate the risk of heart disease is a complex process because it depends on various input parameters. The linear and analytical models failed due to their assumptions and limited dataset. The existing studies have used medical data for classification purposes, which help to identify the exact condition of the patient, but no one has developed any correlation equation which can be directly used to identify the patients. In this paper, mathematical models have been developed using the medical database of patients suffering from heart disease. Curve fitting and artificial neural network (ANN) have been applied to model the condition of patients to find out whether the patient is suffering from heart disease or not. The developed curve fitting model can identify the cardiac patient with accuracy, having a coefficient of determination ( -value) of 0.6337 and mean absolute error (MAE) of 0.293 at a root mean square error (RMSE) of 0.3688, and the ANN-based model can identify the cardiac patient with accuracy having a coefficient of determination ( -value) of 0.8491 and MAE of 0.20 at RMSE of 0.267, it has been found that ANN provides superior mathematical modeling than curve fitting method in identifying the heart disease patients. Medical professionals can utilize this model to identify heart patients without any angiography or computed tomography angiography test.

摘要

慢性病是当今最严重的健康问题之一,心脏病就是其中之一。冠心病(CAD)会影响心脏的血液流动,是最常见的心脏病类型,可导致心脏病发作。高血压、高胆固醇和吸烟会显著增加患心脏病的风险。估计心脏病的风险是一个复杂的过程,因为它取决于各种输入参数。线性和分析模型由于其假设和有限的数据集而失败。现有研究已经使用医疗数据进行分类,这有助于确定患者的确切状况,但没有人开发出任何可以直接用于识别患者的相关方程。在本文中,使用患有心脏病的患者的医疗数据库开发了数学模型。应用曲线拟合和人工神经网络(ANN)对患者的状况进行建模,以确定患者是否患有心脏病。开发的曲线拟合模型可以准确识别出心脏病患者,其决定系数(- 值)为 0.6337,平均绝对误差(MAE)为 0.293,均方根误差(RMSE)为 0.3688,基于 ANN 的模型可以准确识别出心脏病患者,其决定系数(- 值)为 0.8491,MAE 为 0.20,RMSE 为 0.267,结果表明 ANN 在识别心脏病患者方面比曲线拟合方法提供了更好的数学建模。医疗专业人员可以利用该模型在无需进行血管造影或计算机断层扫描血管造影检查的情况下识别心脏病患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f0/9329013/e6335121b32a/CIN2022-5882144.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验