深度学习驱动的超声辅助诊断:优化GallScopeNet以精确识别胆道闭锁

Deep learning-driven ultrasound-assisted diagnosis: optimizing GallScopeNet for precise identification of biliary atresia.

作者信息

Niu Yupeng, Li Jingze, Xu Xiyuan, Luo Pu, Liu Pingchuan, Wang Jian, Mu Jiong

机构信息

College of Information Engineering, Sichuan Agricultural University, Ya'an, China.

Artificial Intelligence Laboratory, Sichuan Agricultural University, Ya'an, China.

出版信息

Front Med (Lausanne). 2024 Oct 8;11:1445069. doi: 10.3389/fmed.2024.1445069. eCollection 2024.

Abstract

BACKGROUND

Biliary atresia (BA) is a severe congenital biliary developmental abnormality threatening neonatal health. Traditional diagnostic methods rely heavily on experienced radiologists, making the process time-consuming and prone to variability. The application of deep learning for the automated diagnosis of BA remains underexplored.

METHODS

This study introduces GallScopeNet, a deep learning model designed to improve diagnostic efficiency and accuracy through innovative architecture and advanced feature extraction techniques. The model utilizes data from a carefully constructed dataset of gallbladder ultrasound images. A dataset comprising thousands of ultrasound images was employed, with the majority used for training and validation and a subset reserved for external testing. The model's performance was evaluated using five-fold cross-validation and external assessment, employing metrics such as accuracy and the area under the receiver operating characteristic curve (AUC), compared against clinical diagnostic standards.

RESULTS

GallScopeNet demonstrated exceptional performance in distinguishing BA from non-BA cases. In the external test dataset, GallScopeNet achieved an accuracy of 81.21% and an AUC of 0.85, indicating strong diagnostic capabilities. The results highlighted the model's ability to maintain high classification performance, reducing misdiagnosis and missed diagnosis.

CONCLUSION

GallScopeNet effectively differentiates between BA and non-BA images, demonstrating significant potential and reliability for early diagnosis. The system's high efficiency and accuracy suggest it could serve as a valuable diagnostic tool in clinical settings, providing substantial technical support for improving diagnostic workflows.

摘要

背景

胆道闭锁(BA)是一种严重的先天性胆道发育异常,威胁着新生儿的健康。传统的诊断方法严重依赖经验丰富的放射科医生,使得诊断过程耗时且容易出现差异。深度学习在BA自动诊断中的应用仍未得到充分探索。

方法

本研究引入了GallScopeNet,这是一种深度学习模型,旨在通过创新的架构和先进的特征提取技术提高诊断效率和准确性。该模型利用精心构建的胆囊超声图像数据集的数据。使用了一个包含数千张超声图像的数据集,其中大部分用于训练和验证,一小部分留作外部测试。通过五折交叉验证和外部评估,使用准确率和受试者工作特征曲线下面积(AUC)等指标,并与临床诊断标准进行比较,对模型的性能进行评估。

结果

GallScopeNet在区分BA和非BA病例方面表现出色。在外部测试数据集中,GallScopeNet的准确率达到81.21%,AUC为0.85,表明其具有强大的诊断能力。结果突出了该模型保持高分类性能、减少误诊和漏诊的能力。

结论

GallScopeNet能够有效地区分BA和非BA图像,在早期诊断方面显示出巨大的潜力和可靠性。该系统的高效率和准确性表明,它可以作为临床环境中有价值的诊断工具,为改进诊断工作流程提供大量技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18a4/11493747/ca6f54386946/fmed-11-1445069-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索