Suppr超能文献

基于机器学习的惊恐障碍与其他焦虑症的鉴别

Machine learning-based discrimination of panic disorder from other anxiety disorders.

作者信息

Na Kyoung-Sae, Cho Seo-Eun, Cho Seong-Jin

机构信息

Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea.

Department of Psychiatry, Gil Medical Center, Incheon, Republic of Korea.

出版信息

J Affect Disord. 2021 Jan 1;278:1-4. doi: 10.1016/j.jad.2020.09.027. Epub 2020 Sep 11.

Abstract

BACKGROUNDS

Panic disorder is a highly prevalent psychiatric disorder that substantially impairs quality of life and psychosocial function. Panic disorder arises from neurobiological substrates and developmental factors that distinguish it from other anxiety disorders. Differential diagnosis between panic disorder and other anxiety disorders has only been conducted in terms of a phenomenological spectrum.

METHODS

Through a machine learning-based approach with heart rate variability (HRV) as input, we aimed to build algorithms that can differentiate panic disorder from other anxiety disorders. Five algorithms were used: random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), artificial neural network (ANN), and regularized logistic regression (LR). 10-fold cross-validation with five repeats was used to build the final models.

RESULTS

A total of 60 patients with panic disorder and 61 patients with other anxiety disorders (aged between 20 and 65 years) were recruited. The L1-regularized LR showed the best accuracy (0.784), followed by ANN (0.730), SVM (0.730), GBM (0.676), and finally RF (0.649). LR also had good performance in other measures, such as F-score (0.790), specificity (0.737), sensitivity (0.833), and Matthews correlation coefficient (0.572).

LIMITATIONS

Cross-sectional design and limited sample size is limitations.

CONCLUSION

This study demonstrated that HRV can be used to differentiate panic disorder from other anxiety disorders. Future studies with larger sample sizes and longitudinal design are required to replicate the diagnostic utility of HRV in a machine learning approach.

摘要

背景

惊恐障碍是一种高度流行的精神障碍,严重损害生活质量和社会心理功能。惊恐障碍源于神经生物学基质和发育因素,使其有别于其他焦虑症。惊恐障碍与其他焦虑症之间的鉴别诊断仅在现象学范围内进行。

方法

通过一种以心率变异性(HRV)为输入的基于机器学习的方法,我们旨在构建能够区分惊恐障碍与其他焦虑症的算法。使用了五种算法:随机森林(RF)、梯度提升机(GBM)、支持向量机(SVM)、人工神经网络(ANN)和正则化逻辑回归(LR)。采用五重复的10折交叉验证来构建最终模型。

结果

共招募了60例惊恐障碍患者和61例其他焦虑症患者(年龄在20至65岁之间)。L1正则化LR显示出最佳准确率(0.784),其次是ANN(0.730)、SVM(0.730)、GBM(0.676),最后是RF(0.649)。LR在其他指标上也表现良好,如F分数(0.790)、特异性(0.737)、敏感性(0.833)和马修斯相关系数(0.572)。

局限性

横断面设计和样本量有限是局限性。

结论

本研究表明,HRV可用于区分惊恐障碍与其他焦虑症。需要未来进行更大样本量和纵向设计的研究,以在机器学习方法中复制HRV的诊断效用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验