Suppr超能文献

基于低频波动幅度的支持向量回归模型预测首发精神分裂症患者的面部情绪识别能力

Prediction of Facial Emotion Recognition Ability in Patients With First-Episode Schizophrenia Using Amplitude of Low-Frequency Fluctuation-Based Support Vector Regression Model.

作者信息

Kuang Qi-Jie, Zhou Su-Miao, Liu Yi, Wu Hua-Wang, Bi Tai-Yong, She Sheng-Lin, Zheng Ying-Jun

机构信息

Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.

Centre for Mental Health Research in School of Management, Zunyi Medical University, Zunyi, China.

出版信息

Front Psychiatry. 2022 Jul 13;13:905246. doi: 10.3389/fpsyt.2022.905246. eCollection 2022.

Abstract

OBJECTIVE

There were few studies that had attempted to predict facial emotion recognition (FER) ability at the individual level in schizophrenia patients. In this study, we developed a model for the prediction of FER ability in Chinese Han patients with the first-episode schizophrenia (FSZ).

MATERIALS AND METHODS

A total of 28 patients with FSZ and 33 healthy controls (HCs) were recruited. All subjects underwent resting-state fMRI (rs-fMRI). The amplitude of low-frequency fluctuation (ALFF) method was selected to analyze voxel-level spontaneous neuronal activity. The visual search experiments were selected to evaluate the FER, while the support vector regression (SVR) model was selected to develop a model based on individual rs-fMRI brain scan.

RESULTS

Group difference in FER ability showed statistical significance ( < 0.05). In FSZ patients, increased mALFF value were observed in the limbic lobe and frontal lobe, while decreased mALFF value were observed in the frontal lobe, parietal lobe, and occipital lobe ( < 0.05, AlphaSim correction). SVR analysis showed that abnormal spontaneous activity in multiple brain regions, especially in the right posterior cingulate, right precuneus, and left calcarine could effectively predict fearful FER accuracy ( = 0.64, = 0.011) in patients.

CONCLUSION

Our study provides an evidence that abnormal spontaneous activity in specific brain regions may serve as a predictive biomarker for fearful FER ability in schizophrenia.

摘要

目的

很少有研究尝试在个体水平上预测精神分裂症患者的面部情绪识别(FER)能力。在本研究中,我们开发了一个模型来预测中国汉族首发精神分裂症(FSZ)患者的FER能力。

材料与方法

共招募了28例FSZ患者和33名健康对照(HCs)。所有受试者均接受静息态功能磁共振成像(rs-fMRI)。选择低频振幅(ALFF)方法分析体素水平的自发神经元活动。选择视觉搜索实验来评估FER,同时选择支持向量回归(SVR)模型基于个体rs-fMRI脑扫描建立模型。

结果

FER能力的组间差异具有统计学意义(<0.05)。在FSZ患者中,边缘叶和额叶的平均ALFF值升高,而额叶、顶叶和枕叶的平均ALFF值降低(<0.05,AlphaSim校正)。SVR分析表明,多个脑区的异常自发活动,尤其是右侧后扣带回、右侧楔前叶和左侧距状裂,可有效预测患者恐惧FER的准确性(=0.64,=0.011)。

结论

我们的研究提供了证据,表明特定脑区的异常自发活动可能作为精神分裂症患者恐惧FER能力的预测生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ab0/9326045/f414bd6b1c18/fpsyt-13-905246-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验