Suppr超能文献

用于新冠病毒病早期检测的实时医疗物联网框架

Real-time internet of medical things framework for early detection of Covid-19.

作者信息

Yildirim Emre, Cicioğlu Murtaza, Çalhan Ali

机构信息

Computer Technology Department, Osmaniye Korkut Ata University, Osmaniye, Turkey.

Computer Engineering Department, Bursa Uludağ University, Bursa, Turkey.

出版信息

Neural Comput Appl. 2022;34(22):20365-20378. doi: 10.1007/s00521-022-07582-x. Epub 2022 Jul 24.

Abstract

The Covid-19 pandemic is a deadly epidemic and continues to affect all world. This situation dragged the countries into a global crisis and caused the collapse of some health systems. Therefore, many technologies are needed to slow down the spread of the Covid-19 epidemic and produce solutions. In this context, some developments have been made with artificial intelligence, machine learning and deep learning support systems in order to alleviate the burden on the health system. In this study, a new Internet of Medical Things (IoMT) framework is proposed for the detection and early prevention of Covid-19 infection. In the proposed IoMT framework, a Covid-19 scenario consisting of various numbers of sensors is created in the Riverbed Modeler simulation software. The health data produced in this scenario are analyzed in real time with Apache Spark technology, and disease prediction is made. In order to provide more accurate results for Covid-19 disease prediction, Random Forest and Gradient Boosted Tree (GBT) Ensemble Learning classifiers, which are formed by Decision Tree classifiers, are compared for the performance evaluation. In addition, throughput, end-to-end delay results and Apache Spark data processing performance of heterogeneous nodes with different priorities are analyzed in the Covid-19 scenario. The MongoDB NoSQL database is used in the IoMT framework to store big health data produced in real time and use it in subsequent processes. The proposed IoMT framework experimental results show that the GBTs classifier has the best performance with 95.70% training, 95.30% test accuracy and 0.970 area under the curve (AUC) values. Moreover, the promising real-time performances of wireless body area network (WBAN) simulation scenario and Apache Spark show that they can be used for the early detection of Covid-19 disease.

摘要

新冠疫情是一场致命的流行病,持续影响着全世界。这种情况使各国陷入全球危机,并导致一些卫生系统崩溃。因此,需要多种技术来减缓新冠疫情的传播并提供解决方案。在此背景下,为减轻卫生系统负担,在人工智能、机器学习和深度学习支持系统方面取得了一些进展。在本研究中,提出了一种新的医疗物联网(IoMT)框架,用于新冠感染的检测和早期预防。在所提出的IoMT框架中,在Riverbed Modeler模拟软件中创建了一个由各种数量传感器组成的新冠场景。利用Apache Spark技术对该场景中产生的健康数据进行实时分析,并进行疾病预测。为了在新冠疾病预测中提供更准确的结果,对由决策树分类器组成的随机森林和梯度提升树(GBT)集成学习分类器进行性能评估比较。此外,在新冠场景中分析了不同优先级异构节点的吞吐量、端到端延迟结果以及Apache Spark数据处理性能。IoMT框架中使用MongoDB NoSQL数据库来存储实时产生的大量健康数据,并在后续流程中使用。所提出的IoMT框架实验结果表明,GBT分类器具有最佳性能,训练准确率为95.70%,测试准确率为95.30%,曲线下面积(AUC)值为0.970。此外,无线体域网(WBAN)模拟场景和Apache Spark的实时性能表现良好,表明它们可用于新冠疾病的早期检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验