Suppr超能文献

抗菌光动力疗法的生化机制。

The Biochemical Mechanisms of Antimicrobial Photodynamic Therapy.

机构信息

BioLambda, Scientific and Commercial Ltd., São Paulo, SP, Brazil.

Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.

出版信息

Photochem Photobiol. 2023 Mar;99(2):742-750. doi: 10.1111/php.13685. Epub 2022 Aug 12.

Abstract

The unbridled dissemination of multidrug-resistant pathogens is a major threat to global health and urgently demands novel therapeutic alternatives. Antimicrobial photodynamic therapy (aPDT) has been developed as a promising approach to treat localized infections regardless of drug resistance profile or taxonomy. Even though this technique has been known for more than a century, discussions and speculations regarding the biochemical mechanisms of microbial inactivation have never reached a consensus on what is the primary cause of cell death. Since photochemically generated oxidants promote ubiquitous reactions with various biomolecules, researchers simply assumed that all cellular structures are equally damaged. In this study, biochemical, molecular, biological and advanced microscopy techniques were employed to investigate whether protein, membrane or DNA damage correlates better with dose-dependent microbial inactivation kinetics. We showed that although mild membrane permeabilization and late DNA damage occur, no correlation with inactivation kinetics was found. On the other hand, protein degradation was analyzed by three different methods and showed a dose-dependent trend that matches microbial inactivation kinetics. Our results provide a deeper mechanistic understanding of aPDT that can guide the scientific community toward the development of optimized photosensitizing drugs and also rationally propose synergistic combinations with antimicrobial chemotherapy.

摘要

耐药病原体的无节制传播是对全球健康的主要威胁,迫切需要新的治疗替代品。抗菌光动力疗法(aPDT)已被开发为一种有前途的治疗局部感染的方法,无论耐药谱或分类如何。尽管这种技术已经存在了一个多世纪,但关于微生物失活的生化机制的讨论和推测从未就细胞死亡的主要原因达成共识。由于光化学产生的氧化剂促进与各种生物分子的普遍反应,研究人员简单地假设所有细胞结构都受到同等程度的损伤。在这项研究中,采用生物化学、分子生物学、生物学和先进显微镜技术来研究蛋白质、膜或 DNA 损伤是否与剂量依赖性微生物失活动力学更好地相关。我们表明,尽管发生轻微的膜通透性增加和晚期 DNA 损伤,但与失活动力学没有相关性。另一方面,通过三种不同的方法分析蛋白质降解,并显示出与微生物失活动力学相匹配的剂量依赖性趋势。我们的结果提供了对 aPDT 的更深入的机制理解,这可以指导科学界开发优化的光敏药物,并合理提出与抗菌化疗的协同组合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验