Suppr超能文献

体外研究牙釉质表面侵蚀驱动的晶体生长现象。

Erosion-Driven Enamel Crystallite Growth Phenomenon at the Tooth Surface In Vitro.

机构信息

Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 31116, Chungnam, Republic of Korea.

Department of Chemical and Biological Engineering, College of Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea.

出版信息

ACS Appl Bio Mater. 2022 Aug 15;5(8):3753-3765. doi: 10.1021/acsabm.2c00247. Epub 2022 Aug 1.

Abstract

The erosion of tooth enamel is a common oral disease. The erosion pattern and location and the effects of nanoscale chemical composition on the erosion susceptibility of enamel have been well documented. However, the enamel remineralization accompanied by erosion and its underlying physicochemical mechanisms still remain poorly understood. Here, using rat molars selected for its good relevancy to human teeth, we investigated the remineralization behavior of the outermost enamel surface at the nanoscale level during erosion in diluted hydrochloric acid solutions. While particles on the outermost enamel surface that represent the termination of crystallites protruding to the surface from the near-surface core eroded by acid-attack, the lateral-growth of the particles (i.e., the main remineralization picture of the surface enamel) occurred concurrently. Ionic analyses indicate that the particle growth is driven by the local increase in pH near the eroding enamel surface as a result of the combination of the PO and CO released from the enamel surface with H. As the pH increases eventually to the equilibrium pH level (∼5.5), a local supersaturation of solute ions is induced, resulting in particle growth. A simple growth model based on the experimental results together with an assumption that the particle growth is a diffusional process suggests that the particle growth rate is controlled by the degree of supersaturation and accommodation site for solute ions, which are affected by the pH of solution eroding the enamel surface. The remineralization mechanism presented by our study can explain how the enamel on being acid-exposed or tooth decay progress by beverage or food can naturally remineralize in the oral cavity and how remineralization can foster different surface topology at the nanoscale, depending on the pH value of etchant before the dental filling material is applied.

摘要

牙釉质侵蚀是一种常见的口腔疾病。牙釉质的侵蚀模式和位置,以及纳米级化学成分对牙釉质侵蚀敏感性的影响已经得到了很好的记录。然而,伴随侵蚀的牙釉质再矿化及其潜在的物理化学机制仍知之甚少。在这里,我们使用选择的大鼠磨牙,因其与人类牙齿有很好的相关性,研究了在稀释盐酸溶液中侵蚀时最外层牙釉质表面的再矿化行为。在酸蚀攻击下从近表面核心突出到表面的晶核末端的颗粒侵蚀时,颗粒(即表面牙釉质的主要再矿化图)发生侧向生长。离子分析表明,颗粒生长是由侵蚀牙釉质表面附近 pH 值的局部增加驱动的,这是由于 PO 和 CO 从牙釉质表面释放与 H 结合的结果。随着 pH 值最终增加到平衡 pH 值(约 5.5),局部过饱和度诱导溶质离子,导致颗粒生长。基于实验结果的简单生长模型以及假设颗粒生长是扩散过程,表明颗粒生长速率由过饱和度和溶质离子的容纳位点控制,这受侵蚀牙釉质表面的溶液 pH 值影响。我们的研究提出的再矿化机制可以解释牙釉质在暴露于酸或龋齿进展时,如何通过饮料或食物在口腔中自然再矿化,以及再矿化如何根据应用牙科填充材料前蚀刻剂的 pH 值在纳米尺度上促进不同的表面拓扑结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验