Suppr超能文献

偶然相遇和变形虫的运动驱动了 对 的捕食。

Random encounters and amoeba locomotion drive the predation of by .

机构信息

Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, CH-8093 Zurich, Switzerland.

Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2122659119. doi: 10.1073/pnas.2122659119. Epub 2022 Aug 1.

Abstract

Predatory protozoa play an essential role in shaping microbial populations. Among these protozoa, are ubiquitous in the soil and aqueous environments inhabited by . Observations of predator-prey interactions between these two microorganisms revealed a predation strategy in which assemble in aggregates, termed backpacks, on their posterior. The rapid formation and specific location of backpacks led to the assumption that may recruit by releasing an attractant. However, this hypothesis has not been validated, and the mechanisms driving this process remained unknown. Here, we combined video microscopy, microfluidics, single-cell image analyses, and theoretical modeling to characterize predator-prey interactions of and and determined whether bacterial chemotaxis contributes to the backpack formation. Our results indicate that captures are not driven by chemotaxis. Instead, random encounters of bacteria with amoebae initialize bacterial capture and aggregation. This is supported by the strong correlation between experimentally derived capture rates and theoretical encounter models at the single-cell level. Observations of the spatial rearrangement of trapped by revealed that bacterial aggregation into backpacks is mainly driven by amoeboid locomotion. Overall, we show that two nonspecific, independent mechanisms, namely random encounters enhanced by bacterial motility and predator surface-bound locomotion, drive backpack formation, resulting in a bacterial aggregate on the amoeba ready for phagocytosis. Due to the prevalence of these two processes in the environment, we expect this strategy to be widespread among amoebae, contributing to their effectiveness as predators.

摘要

掠夺性原生动物在塑造微生物种群方面起着至关重要的作用。在这些原生动物中, 广泛存在于 和 的土壤和水生生境中。对这两种微生物之间的捕食者-猎物相互作用的观察表明, 有一种捕食策略,即在其尾部形成称为背包的聚集物。背包的快速形成和特定位置导致人们假设 可能通过释放一种引诱剂来招募 。然而,这一假设尚未得到验证,驱动这一过程的机制仍不清楚。在这里,我们结合视频显微镜、微流控、单细胞图像分析和理论建模来描述 和 的捕食者-猎物相互作用,并确定细菌趋化作用是否有助于背包的形成。我们的结果表明, 不是由趋化作用驱动的。相反,细菌与变形虫的随机相遇初始化了细菌的捕获和聚集。这一点得到了单细胞水平上实验得出的捕获率与理论相遇模型之间的强相关性的支持。对被 捕获的 空间重排的观察表明,细菌聚集到背包中主要是由变形虫运动驱动的。总的来说,我们表明,两种非特异性的、独立的机制,即由细菌运动增强的随机相遇和捕食者表面的运动,驱动了背包的形成,导致了一个准备被吞噬的细菌聚集体在变形虫上。由于这两个过程在环境中普遍存在,我们预计这种策略在变形虫中很常见,有助于它们作为捕食者的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65dc/9371647/47b6bc905326/pnas.2122659119fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验