Keegstra Johannes M, Landry Zachary C, Zweifel Sophie T, Roller Benjamin R K, Baumgartner Dieter A, Carrara Francesco, Martínez-Pérez Clara, Clerc Estelle E, Ackermann Martin, Stocker Roman
Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland.
EAWAG - Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
Nat Microbiol. 2025 May 26. doi: 10.1038/s41564-025-01997-7.
Copiotrophic marine bacteria contribute to the control of carbon storage in the ocean by remineralizing organic matter. Motility presents copiotrophs with a risk-reward trade-off: it is highly beneficial in seeking out sparse nutrient hotspots, but energetically costly. Here we studied the motility endurance of 26 marine isolates, representing 18 species, using video microscopy and cell tracking over 2 days of carbon starvation. We found that the trade-off results in a dichotomy among marine bacteria, in which risk-averse copiotrophs ceased motility within hours ('limostatic'), whereas risk-prone copiotrophs converted ~9% of their biomass per day into energy to retain motility for the 2 days of observation ('limokinetic'). Using machine learning classifiers, we identified a genomic component associated with both strategies, sufficiently robust to predict the response of additional species with 86% accuracy. This dichotomy can help predict the prevalence of foraging strategies in marine microbes and inform models of ocean carbon cycles.
富养型海洋细菌通过使有机物质再矿化,有助于控制海洋中的碳储存。运动能力给富养型细菌带来了风险与回报的权衡:在寻找稀疏的营养热点时非常有益,但能量消耗巨大。在这里,我们使用视频显微镜和细胞追踪技术,对代表18个物种的26株海洋分离菌在2天的碳饥饿期间的运动耐力进行了研究。我们发现,这种权衡导致了海洋细菌的二分法,其中规避风险的富养型细菌在数小时内就停止了运动(“静止型”),而倾向于冒险的富养型细菌每天将约9%的生物量转化为能量,以便在2天的观察期内保持运动能力(“运动型”)。使用机器学习分类器,我们确定了与这两种策略相关的基因组成分,其足够强大,能够以86%的准确率预测其他物种的反应。这种二分法有助于预测海洋微生物觅食策略的普遍性,并为海洋碳循环模型提供信息。