Stehnach Michael R, Henshaw Richard J, Floge Sheri A, Guasto Jeffrey S
Department of Mechanical Engineering, Tufts University, Medford, MA, USA.
Department of Physics, Brandeis University, Waltham, MA, USA.
Bio Protoc. 2024 Sep 5;14(17):e5062. doi: 10.21769/BioProtoc.5062.
The sensing of and response to ambient chemical gradients by microorganisms via chemotaxis regulates many microbial processes fundamental to ecosystem function, human health, and disease. Microfluidics has emerged as an indispensable tool for the study of microbial chemotaxis, enabling precise, robust, and reproducible control of spatiotemporal chemical conditions. Previous techniques include combining laminar flow patterning and stop-flow diffusion to produce quasi-steady chemical gradients to directly probe single-cell responses or loading micro-wells to entice and ensnare chemotactic bacteria in quasi-steady chemical conditions. Such microfluidic approaches exemplify a trade-off between high spatiotemporal resolution of cell behavior and high-throughput screening of concentration-specific chemotactic responses. However, both aspects are necessary to disentangle how a diverse range of chemical compounds and concentrations mediate microbial processes such as nutrient uptake, reproduction, and chemorepulsion from toxins. Here, we present a protocol for the multiplexed chemotaxis device (MCD), a parallelized microfluidic platform for efficient, high-throughput, and high-resolution chemotaxis screening of swimming microbes across a range of chemical concentrations. The first layer of the two-layer polydimethylsiloxane (PDMS) device comprises a serial dilution network designed to produce five logarithmically diluted chemostimulus concentrations plus a control from a single chemical solution input. Laminar flow in the second device layer brings a cell suspension and buffer solution into contact with the chemostimuli solutions in each of six separate chemotaxis assays, in which microbial responses are imaged simultaneously over time. The MCD is produced via standard photography and soft lithography techniques and provides robust, repeatable chemostimulus concentrations across each assay in the device. This microfluidic platform provides a chemotaxis assay that blends high-throughput screening approaches with single-cell resolution to achieve a more comprehensive understanding of chemotaxis-mediated microbial processes. Key features • Microchannel master molds are fabricated using photolithography techniques in a clean room with a mask aligner to fabricate multilevel feature heights. • The microfluidic device is fabricated from PDMS using standard soft lithography replica molding from the master molds. • The resulting microchannel requires a one-time calibration of the driving inlet pressures, after which devices from the same master molds have robust performance. • The microfluidic platform is optimized and tested for measuring chemotaxis of swimming prokaryotes.
微生物通过趋化作用感知周围化学梯度并做出反应,这一过程调节着许多对生态系统功能、人类健康和疾病至关重要的微生物过程。微流控技术已成为研究微生物趋化作用不可或缺的工具,能够对时空化学条件进行精确、可靠且可重复的控制。先前的技术包括结合层流图案化和停流扩散来产生准稳态化学梯度,以直接探测单细胞反应,或者加载微孔以在准稳态化学条件下诱捕趋化细菌。此类微流控方法体现了细胞行为的高时空分辨率与浓度特异性趋化反应的高通量筛选之间的权衡。然而,要弄清楚各种化学化合物和浓度如何介导微生物过程,如营养吸收、繁殖以及对毒素的化学排斥,这两个方面都是必要的。在此,我们展示了一种用于多重趋化作用装置(MCD)的方案,这是一个并行化的微流控平台,用于在一系列化学浓度下对游动微生物进行高效、高通量和高分辨率的趋化作用筛选。两层聚二甲基硅氧烷(PDMS)装置的第一层包括一个系列稀释网络,设计用于从单一化学溶液输入产生五个对数稀释的化学刺激浓度以及一个对照。第二层装置中的层流使细胞悬浮液和缓冲溶液与六个独立趋化分析中的每一个中的化学刺激溶液接触,在这些分析中,微生物反应随时间同时成像。MCD通过标准光刻和软光刻技术制造,并在装置中的每个分析中提供稳健、可重复的化学刺激浓度。这个微流控平台提供了一种趋化分析方法,将高通量筛选方法与单细胞分辨率相结合,以更全面地理解趋化作用介导的微生物过程。关键特性 • 微通道母模在洁净室中使用光刻技术和掩膜对准器制造,以制造多级特征高度。 • 微流控装置由PDMS使用标准软光刻复制成型技术从母模制造而成。 • 所得微通道需要对驱动入口压力进行一次性校准,之后来自同一母模的装置具有稳健的性能。 • 微流控平台经过优化和测试,用于测量游动原核生物的趋化作用。