Department of Radiology, Mayo Clinic, Rochester, MN, United States of America.
Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
Gynecol Oncol. 2022 Sep;166(3):596-605. doi: 10.1016/j.ygyno.2022.07.024. Epub 2022 Jul 29.
Machine learning, deep learning, and artificial intelligence (AI) are terms that have made their way into nearly all areas of medicine. In the case of medical imaging, these methods have become the state of the art in nearly all areas from image reconstruction to image processing and automated analysis. In contrast to other areas, such as brain and breast imaging, the impacts of AI have not been as strongly felt in gynecologic imaging. In this review article, we: (i) provide a background of clinically relevant AI concepts, (ii) describe methods and approaches in computer vision, and (iii) highlight prior work related to image classification tasks utilizing AI approaches in gynecologic imaging.
A comprehensive search of several databases from each database's inception to March 18th, 2021, English language, was conducted. The databases included Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, and Daily, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, and Ovid Cochrane Database of Systematic Reviews and ClinicalTrials.gov.
We performed an extensive literature review with 61 articles curated by three reviewers and subsequent sorting by specialists using specific inclusion and exclusion criteria.
TABULATION, INTEGRATION, AND RESULTS: We summarize the literature grouped by each of the three most common gynecologic malignancies: endometrial, cervical, and ovarian. For each, a brief introduction encapsulating the AI methods, imaging modalities, and clinical parameters in the selected articles is presented. We conclude with a discussion of current developments, trends and limitations, and suggest directions for future study.
This review article should prove useful for collaborative teams performing research studies targeted at the incorporation of radiological imaging and AI methods into gynecological clinical practice.
机器学习、深度学习和人工智能 (AI) 已成为医学几乎所有领域的热门词汇。在医学成像领域,这些方法已经成为从图像重建到图像处理和自动分析等几乎所有领域的最新技术。与脑成像和乳腺成像等其他领域不同,人工智能在妇科成像领域的影响尚未得到强烈感受到。在这篇综述文章中,我们:(i) 提供与临床相关的 AI 概念背景,(ii) 描述计算机视觉中的方法和方法,以及 (iii) 强调利用 AI 方法在妇科成像中进行图像分类任务的先前工作。
从每个数据库的创建到 2021 年 3 月 18 日,对几个数据库进行了全面搜索,语言为英语。数据库包括 Ovid MEDLINE®和 Epub Ahead of Print、In-Process 和其他非索引引文以及每日 Ovid EMBASE、Ovid Cochrane 中央对照试验注册中心和 Ovid Cochrane 系统评价数据库和 ClinicalTrials.gov。
我们进行了广泛的文献综述,由三名审稿人对 61 篇文章进行了整理,并由专家使用特定的纳入和排除标准进行后续分类。
列表、综合和结果:我们按三种最常见的妇科恶性肿瘤(子宫内膜、宫颈和卵巢)对文献进行了总结。对于每种肿瘤,我们简要介绍了所选文章中 AI 方法、成像方式和临床参数。最后,我们讨论了当前的发展、趋势和局限性,并为未来的研究提出了方向。
这篇综述文章对于进行旨在将放射影像学和 AI 方法纳入妇科临床实践的合作研究的团队应该是有用的。