Tang Haocheng, Men Ting, Liu Xianglei, Hu Yaodan, Su Jingqin, Zuo Yanlei, Li Ping, Liang Jinyang, Downer Michael C, Li Zhengyan
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, Québec, Canada.
Light Sci Appl. 2022 Aug 2;11(1):244. doi: 10.1038/s41377-022-00935-0.
Femtosecond lasers are powerful in studying matter's ultrafast dynamics within femtosecond to attosecond time scales. Drawing a three-dimensional (3D) topological map of the optical field of a femtosecond laser pulse including its spatiotemporal amplitude and phase distributions, allows one to predict and understand the underlying physics of light interaction with matter, whose spatially resolved transient dielectric function experiences ultrafast evolution. However, such a task is technically challenging for two reasons: first, one has to capture in single-shot and squeeze the 3D information of an optical field profile into a two-dimensional (2D) detector; second, typical detectors are only sensitive to intensity or amplitude information rather than phase. Here we have demonstrated compressed optical field topography (COFT) drawing a 3D map for an ultrafast optical field in single-shot, by combining the coded aperture snapshot spectral imaging (CASSI) technique with a global 3D phase retrieval procedure. COFT can, in single-shot, fully characterize the spatiotemporal coupling of a femtosecond laser pulse, and live stream the light-speed propagation of an air plasma ionization front, unveiling its potential applications in ultrafast sciences.
飞秒激光在研究飞秒到阿秒时间尺度内物质的超快动力学方面具有强大功能。绘制飞秒激光脉冲光场的三维(3D)拓扑图,包括其时空振幅和相位分布,能够让人预测并理解光与物质相互作用的潜在物理原理,物质的空间分辨瞬态介电函数会经历超快演化。然而,这项任务在技术上具有挑战性,原因有两个:其一,必须单次捕获并将光场轮廓的3D信息压缩到二维(2D)探测器中;其二,典型探测器仅对强度或振幅信息敏感,而非相位。在此,我们通过将编码孔径快照光谱成像(CASSI)技术与全局3D相位检索程序相结合,展示了单次绘制超快光场3D图的压缩光场形貌(COFT)。COFT能够单次全面表征飞秒激光脉冲的时空耦合,并实时直播空气等离子体电离前沿的光速传播,揭示其在超快科学中的潜在应用。