Suppr超能文献

线粒体能量学在真核生物起源和多样化中的作用。

The role of mitochondrial energetics in the origin and diversification of eukaryotes.

机构信息

Center for Mechanisms of Evolution, The Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ, USA.

Unité d'Ecologie, Systématique et Evolution, Université Paris-Saclay, Orsay, France.

出版信息

Nat Ecol Evol. 2022 Sep;6(9):1307-1317. doi: 10.1038/s41559-022-01833-9. Epub 2022 Aug 1.

Abstract

The origin of eukaryotic cell size and complexity is often thought to have required an energy excess supplied by mitochondria. Recent observations show energy demands to scale continuously with cell volume, suggesting that eukaryotes do not have higher energetic capacity. However, respiratory membrane area scales superlinearly with the cell surface area. Furthermore, the consequences of the contrasting genomic architectures between prokaryotes and eukaryotes have not been precisely quantified. Here, we investigated (1) the factors that affect the volumes at which prokaryotes become surface area-constrained, (2) the amount of energy divested to DNA due to contrasting genomic architectures and (3) the costs and benefits of respiring symbionts. Our analyses suggest that prokaryotes are not surface area-constrained at volumes of 10‒10 µm, the genomic architecture of extant eukaryotes is only slightly advantageous at genomes sizes of 10‒10 base pairs and a larger host cell may have derived a greater advantage (lower cost) from harbouring ATP-producing symbionts. This suggests that eukaryotes first evolved without the need for mitochondria since these ranges hypothetically encompass the last eukaryotic common ancestor and its relatives. Our analyses also show that larger and faster-dividing prokaryotes would have a shortage of respiratory membrane area and divest more energy into DNA. Thus, we argue that although mitochondria may not have been required by the first eukaryotes, eukaryote diversification was ultimately dependent on mitochondria.

摘要

真核细胞大小和复杂性的起源通常被认为需要线粒体提供的能量过剩。最近的观察表明,能量需求与细胞体积连续成比例,这表明真核生物没有更高的能量容量。然而,呼吸膜面积与细胞表面积呈超线性比例缩放。此外,原核生物和真核生物之间基因组结构对比的后果尚未被精确量化。在这里,我们研究了:(1)影响原核生物达到表面积受限体积的因素;(2)由于基因组结构对比而导致的用于 DNA 的能量损耗;(3)呼吸共生体的成本和收益。我们的分析表明,原核生物在 10-10μm 的体积下不受表面积限制,现存真核生物的基因组结构在 10-10 个碱基对的基因组大小下仅略有优势,而更大的宿主细胞可能从产生 ATP 的共生体中获得更大的优势(更低的成本)。这表明真核生物最初的进化不需要线粒体,因为这些范围假设涵盖了最后一个真核生物共同祖先及其亲属。我们的分析还表明,更大和更快分裂的原核生物将缺乏呼吸膜面积,并将更多的能量投入到 DNA 中。因此,我们认为,尽管线粒体可能不是第一批真核生物所必需的,但真核生物的多样化最终取决于线粒体。

相似文献

3
Origin and Early Evolution of the Eukaryotic Cell.真核细胞的起源与早期演化。
Annu Rev Microbiol. 2021 Oct 8;75:631-647. doi: 10.1146/annurev-micro-090817-062213. Epub 2021 Aug 3.
5
How energy flow shapes cell evolution.能量流如何塑造细胞进化。
Curr Biol. 2020 May 18;30(10):R471-R476. doi: 10.1016/j.cub.2020.03.055.
7
Was the Mitochondrion Necessary to Start Eukaryogenesis?线粒体是否是真核生物起源所必需的?
Trends Microbiol. 2019 Feb;27(2):96-104. doi: 10.1016/j.tim.2018.10.005. Epub 2018 Nov 19.
10
Energetics and evolution of anaerobic microbial eukaryotes.厌氧微生物真核生物的能量学和进化。
Nat Microbiol. 2023 Feb;8(2):197-203. doi: 10.1038/s41564-022-01299-2. Epub 2023 Jan 16.

引用本文的文献

1
Mitochondrial transplantation: adaptive bio-enhancement.线粒体移植:适应性生物增强。
Cell Death Dis. 2025 Jul 1;16(1):473. doi: 10.1038/s41419-025-07643-8.
5
Quantifying the evolutionary paths to endomembranes.量化通向内膜系统的进化路径。
Cell Rep. 2025 Apr 22;44(4):115533. doi: 10.1016/j.celrep.2025.115533. Epub 2025 Apr 6.
7
The emerging view on the origin and early evolution of eukaryotic cells.真核细胞起源与早期演化的新观点。
Nature. 2024 Sep;633(8029):295-305. doi: 10.1038/s41586-024-07677-6. Epub 2024 Sep 11.
9
Demystifying anaerobic respiration: a problem-solving exercise.揭开无氧呼吸的神秘面纱:一道解决问题的练习。
J Microbiol Biol Educ. 2024 Dec 12;25(3):e0004424. doi: 10.1128/jmbe.00044-24. Epub 2024 Aug 19.

本文引用的文献

3
Protein crowding in the inner mitochondrial membrane.线粒体内膜中的蛋白质拥挤现象。
Biochim Biophys Acta Bioenerg. 2021 Jan 1;1862(1):148305. doi: 10.1016/j.bbabio.2020.148305. Epub 2020 Sep 8.
4
How energy flow shapes cell evolution.能量流如何塑造细胞进化。
Curr Biol. 2020 May 18;30(10):R471-R476. doi: 10.1016/j.cub.2020.03.055.
5
The Syntrophy hypothesis for the origin of eukaryotes revisited.重新审视真核生物起源的共生机理假说。
Nat Microbiol. 2020 May;5(5):655-667. doi: 10.1038/s41564-020-0710-4. Epub 2020 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验