Suppr超能文献

深度群体基因组学揭示了感染水稻和甘蔗的病原体中脂多糖生物合成基因座的系统性和并行进化。

Deep Population Genomics Reveals Systematic and Parallel Evolution at a Lipopolysaccharide Biosynthetic Locus in Pathogens That Infect Rice and Sugarcane.

机构信息

Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.

出版信息

Appl Environ Microbiol. 2022 Aug 23;88(16):e0055022. doi: 10.1128/aem.00550-22. Epub 2022 Aug 2.

Abstract

The advent of high-throughput sequencing and population genomics has enabled researchers to investigate selection pressure at hypervariable genomic loci encoding pathogen-associated molecular pattern (PAMP) molecules like lipopolysaccharide (LPS). Xanthomonas is a model and a major group of phytopathogenic bacteria that infect hosts in tissue-specific manner. Our in-depth population-based genomic investigation revealed the emergence of major lineages in two Xanthomonas pathogens that infect xylem of rice and sugarcane is associated with the acquisition and later large-scale replacement by distinct type of LPS cassettes. In the population of the rice xylem pathogen, Xanthomonas oryzae pv. oryzae (Xoo) and sugarcane pathogens Xanthomonas sacchari (Xsac) and Xanthomonas vasicola (Xvv), the BXO8 type of LPS cassette is replaced by a BXO1 type of cassette in Xoo and by Xvv type LPS cassette in Xsac and Xvv. These findings suggest a wave of parallel evolution at an LPS locus mediated by horizontal gene transfer (HGT) events during its adaptation and emergence. Aside from xylem pathogens, two closely related lineages of Xoo that infect parenchyma of rice and Leersia hexandra grass have acquired an LPS cassette from Xanthomonas pathogens that infect parenchyma of citrus, walnut, and strawberries, indicating yet another instance of parallel evolution mediated by HGT at an LPS locus. Our targeted and megapopulation-based genome dynamic studies revealed the acquisition and dominance of specific types of LPS cassettes in adaptation and success of a major group of phytopathogenic bacteria. Lipopolysaccharide (LPS) is a major microbe associated molecular pattern and hence a major immunomodulator. As a major and outer member component, it is expected that LPS is a frontline defense mechanism to deal with different host responses. Limited studies have indicated that LPS loci are also highly variable at strain and species level in plant-pathogenic bacteria, suggesting strong selection pressure from plants and associated niches. The advent of high-throughput genomics has led to the availability of a large set of genomic resources at taxonomic and population levels. This provides an exciting and important opportunity to carryout megascale targeted and population-based comparative genomic/association studies at important loci like those encoding LPS biosynthesis to understand their role in the evolution of the host, tissue specificity, and also predominant lineages. Such studies will also fill major gap in understanding host and tissue specificity in pathogenic bacteria. Our pioneering study uses the Xanthomonas group of phytopathogens that are known for their characteristic host and tissue specificity. The present deep phylogenomics of diverse Xanthomonas species and its members revealed lineage association and dominance of distinct types of LPS in accordance with their origin, host, tissue specificity, and evolutionary success.

摘要

高通量测序和群体基因组学的出现使研究人员能够在编码病原体相关分子模式 (PAMP) 分子的高度变异基因组座上研究选择压力,例如脂多糖 (LPS)。黄单胞菌是一种模式生物和主要的植物病原细菌群,以组织特异性方式感染宿主。我们深入的基于群体的基因组调查揭示了两种感染水稻和甘蔗木质部的黄单胞菌病原体中的主要谱系的出现与获得和后来由不同类型的 LPS 盒的大规模替代有关。在木质部病原体稻黄单胞菌 pv.oryzae(Xoo)和甘蔗病原体黄单胞菌 sacchari(Xsac)和黄单胞菌 vasicola(Xvv)的种群中,BXO8 型 LPS 盒被 Xoo 中的 BXO1 型盒和 Xsac 和 Xvv 中的 Xvv 型 LPS 盒取代。这些发现表明,在 LPS 基因座上,通过水平基因转移 (HGT) 事件介导的平行进化在其适应和出现过程中发生了一波。除了木质部病原体外,感染水稻和 Leersia hexandra 草叶肉的两个密切相关的 Xoo 谱系还从感染柑橘、核桃和草莓的叶肉的黄单胞菌病原体中获得了 LPS 盒,表明 LPS 基因座的平行进化再次由 HGT 介导。我们的靶向和大群体基因组动态研究揭示了在适应和成功的主要植物病原细菌群中获得和主导特定类型的 LPS 盒。脂多糖 (LPS) 是主要的微生物相关分子模式,因此也是主要的免疫调节剂。作为主要的外部成员成分,预计 LPS 是应对不同宿主反应的第一道防线机制。有限的研究表明,植物病原细菌在菌株和物种水平上的 LPS 基因座也高度可变,这表明植物和相关小生境存在强烈的选择压力。高通量基因组学的出现导致了在分类和群体水平上获得了大量基因组资源。这为在 LPS 生物合成等重要基因座进行大规模靶向和基于群体的比较基因组/关联研究提供了一个令人兴奋和重要的机会,以了解它们在宿主进化、组织特异性以及主要谱系中的作用。此类研究还将填补对病原菌宿主和组织特异性理解的主要空白。我们的开创性研究使用了以其特征性宿主和组织特异性而闻名的黄单胞菌植物病原群。本研究对不同黄单胞菌物种及其成员进行了深入的系统发育基因组学研究,揭示了与它们的起源、宿主、组织特异性和进化成功相一致的不同类型 LPS 的谱系关联和主导地位。

相似文献

4
Comparative genomics-based insights into , a non-pathogenic species of healthy rice microbiome with bioprotection function.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0084824. doi: 10.1128/aem.00848-24. Epub 2024 Aug 19.
5
Ecological and Evolutionary Insights into Xanthomonas citri Pathovar Diversity.
Appl Environ Microbiol. 2017 Apr 17;83(9). doi: 10.1128/AEM.02993-16. Print 2017 May 1.
6
Phylogenomic Insights into Diversity and Evolution of Nonpathogenic Strains Associated with Citrus.
mSphere. 2020 Apr 15;5(2):e00087-20. doi: 10.1128/mSphere.00087-20.
8
Reciprocal adaptation of rice and Xanthomonas oryzae pv. oryzae: cross-species 2D GWAS reveals the underlying genetics.
Plant Cell. 2021 Aug 31;33(8):2538-2561. doi: 10.1093/plcell/koab146. Epub 2021 Jun 2.

引用本文的文献

1
Strain of pv. Loses Virulence through Dysregulation of Cardiolipin Synthase.
Plants (Basel). 2024 Sep 14;13(18):2576. doi: 10.3390/plants13182576.
2
Comparative genomics-based insights into , a non-pathogenic species of healthy rice microbiome with bioprotection function.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0084824. doi: 10.1128/aem.00848-24. Epub 2024 Aug 19.

本文引用的文献

1
Population genomics and pathotypic evaluation of the bacterial leaf blight pathogen of rice reveals rapid evolutionary dynamics of a plant pathogen.
Front Cell Infect Microbiol. 2023 May 26;13:1183416. doi: 10.3389/fcimb.2023.1183416. eCollection 2023.
3
Lipopolysaccharide O-antigen molecular and supramolecular modifications of plant root microbiota are pivotal for host recognition.
Carbohydr Polym. 2022 Feb 1;277:118839. doi: 10.1016/j.carbpol.2021.118839. Epub 2021 Nov 8.
5
Xanthomonas sontii sp. nov., a non-pathogenic bacterium isolated from healthy basmati rice (Oryza sativa) seeds from India.
Antonie Van Leeuwenhoek. 2021 Nov;114(11):1935-1947. doi: 10.1007/s10482-021-01652-1. Epub 2021 Sep 17.
6
Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation.
Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296. doi: 10.1093/nar/gkab301.
7
Genomic diversity and organization of complex polysaccharide biosynthesis clusters in the genus Dickeya.
PLoS One. 2021 Feb 11;16(2):e0245727. doi: 10.1371/journal.pone.0245727. eCollection 2021.
8
Comparative Genomics of pv. A* Pathotype Reveals Three Distinct Clades with Varying Plasmid Distribution.
Microorganisms. 2020 Dec 8;8(12):1947. doi: 10.3390/microorganisms8121947.
9
Xanthomonas diversity, virulence and plant-pathogen interactions.
Nat Rev Microbiol. 2020 Aug;18(8):415-427. doi: 10.1038/s41579-020-0361-8. Epub 2020 Apr 28.
10
Diversity and evolution of surface polysaccharide synthesis loci in Enterobacteriales.
ISME J. 2020 Jul;14(7):1713-1730. doi: 10.1038/s41396-020-0628-0. Epub 2020 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验