Suppr超能文献

基于 HRV 特征与机器学习的单导联心电图心房颤动自动检测

An automated detection of atrial fibrillation from single‑lead ECG using HRV features and machine learning.

机构信息

Department of ECE, National Institute of Technology Hamirpur, Hamirpur (HP), India.

Department of ECE, National Institute of Technology Hamirpur, Hamirpur (HP), India.

出版信息

J Electrocardiol. 2022 Nov-Dec;75:70-81. doi: 10.1016/j.jelectrocard.2022.07.069. Epub 2022 Jul 25.

Abstract

BACKGROUND

Atrial fibrillation (AF) is a disorder of the heart rhythm where irregular and rapid heartbeats are observed. This supraventricular arrhythmia may increase the risk of blood clots, stroke, heart failure, and other serious heart complications. Automatic analysis of AF that is based on machine learning (ML) plays an important role in detecting this heart disease.

METHODS

A new approach for automated AF detection is presented using heart rate variability (HRV) features and machine learning. A set of time-domain, frequency-domain and nonlinear features are extracted from the R-R intervals. A new method for frequency-domain analysis of R-R intervals using the Fourier Decomposition Method is presented, which provides promising results as compared to the usual method of power spectral density estimation. We train the algorithm on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) atrial fibrillation database and perform a comprehensive analysis using statistical tests to obtain the results without any intra-patient bias.

RESULTS

The proposed method is able to achieve average result of 95.16% sensitivity, 92.46% specificity and 94.43% accuracy and its performance is better than the existing approaches. Furthermore, the efficacy of the proposed algorithm is tested on eight records from a previously unseen MIT-BIH Arrhythmia Database.

CONCLUSION

This work shows that the proposed HRV features and ML approach can be effectively used for the analysis, detection, and classification of AF.

摘要

背景

心房颤动(AF)是一种心律紊乱,表现为不规则和快速的心跳。这种室上性心律失常可能会增加血栓形成、中风、心力衰竭和其他严重心脏并发症的风险。基于机器学习(ML)的自动 AF 分析在检测这种心脏病方面起着重要作用。

方法

提出了一种使用心率变异性(HRV)特征和机器学习进行自动 AF 检测的新方法。从 R-R 间隔中提取了一组时域、频域和非线性特征。提出了一种使用傅立叶分解方法对 R-R 间隔进行频域分析的新方法,与通常的功率谱密度估计方法相比,该方法提供了有前景的结果。我们在麻省理工学院-贝斯以色列医院(MIT-BIH)心房颤动数据库上训练算法,并使用统计测试进行全面分析,以获得没有任何患者内偏差的结果。

结果

所提出的方法能够实现平均 95.16%的灵敏度、92.46%的特异性和 94.43%的准确性,其性能优于现有方法。此外,还在以前未见的麻省理工学院-贝斯以色列医院心律失常数据库中的 8 个记录上测试了该算法的功效。

结论

这项工作表明,所提出的 HRV 特征和 ML 方法可有效用于 AF 的分析、检测和分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验