Departamento de Diagnóstico por Imágenes, Centro de Educación Medica e Investigaciones Clínicas Norberto Quirno (CEMIC), Buenos Aires, Argentina.
Departamento de Diagnóstico por Imágenes, Centro de Educación Medica e Investigaciones Clínicas Norberto Quirno (CEMIC), Buenos Aires, Argentina.
Med Clin (Barc). 2023 Jan 20;160(2):78-81. doi: 10.1016/j.medcli.2022.04.016. Epub 2022 Jul 15.
To evaluate the diagnostic performance of different artificial intelligence (AI) algorithms for the identification of pulmonary involvement by SARS-CoV-2 based on portable chest radiography (RX).
Prospective observational study that included patients admitted for suspected COVID-19 infection in a university hospital between July and November 2020. The reference standard of pulmonary involvement by SARS-CoV-2 comprised a positive PCR test and low-tract respiratory symptoms.
493 patients were included, 140 (28%) with positive PCR and 32 (7%) with SARS-CoV-2 pneumonia. The AI-B algorithm had the best diagnostic performance (areas under the ROC curve AI-B 0.73, vs. AI-A 0.51, vs. AI-C 0.57). Using a detection threshold greater than 55%, AI-B had greater diagnostic performance than the specialist [(area under the curve of 0.68 (95% CI 0.64-0.72), vs. 0.54 (95% CI 0.49-0.59)].
AI algorithms based on portable RX enabled a diagnostic performance comparable to human assessment for the detection of SARS-CoV-2 lung involvement.
评估基于便携式胸部 X 线摄影(RX)的不同人工智能(AI)算法对 SARS-CoV-2 肺部受累的诊断性能。
前瞻性观察研究,纳入 2020 年 7 月至 11 月期间在一所大学医院因疑似 COVID-19 感染而入院的患者。SARS-CoV-2 肺部受累的参考标准包括阳性 PCR 检测和低呼吸道症状。
共纳入 493 例患者,其中 140 例(28%)PCR 阳性,32 例(7%)为 SARS-CoV-2 肺炎。AI-B 算法具有最佳的诊断性能(ROC 曲线下面积 AI-B 0.73,vs. AI-A 0.51,vs. AI-C 0.57)。使用大于 55%的检测阈值,AI-B 比专家具有更高的诊断性能[曲线下面积为 0.68(95%CI 0.64-0.72),vs. 0.54(95%CI 0.49-0.59)]。
基于便携式 RX 的 AI 算法能够实现与人类评估相当的 SARS-CoV-2 肺部受累检测的诊断性能。