Suppr超能文献

头颈部癌症患者第三颈椎水平的肌肉和脂肪组织分段。

Muscle and adipose tissue segmentations at the third cervical vertebral level in patients with head and neck cancer.

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA.

出版信息

Sci Data. 2022 Aug 2;9(1):470. doi: 10.1038/s41597-022-01587-w.

Abstract

The accurate determination of sarcopenia is critical for disease management in patients with head and neck cancer (HNC). Quantitative determination of sarcopenia is currently dependent on manually-generated segmentations of skeletal muscle derived from computed tomography (CT) cross-sectional imaging. This has prompted the increasing utilization of machine learning models for automated sarcopenia determination. However, extant datasets currently do not provide the necessary manually-generated skeletal muscle segmentations at the C3 vertebral level needed for building these models. In this data descriptor, a set of 394 HNC patients were selected from The Cancer Imaging Archive, and their skeletal muscle and adipose tissue was manually segmented at the C3 vertebral level using sliceOmatic. Subsequently, using publicly disseminated Python scripts, we generated corresponding segmentations files in Neuroimaging Informatics Technology Initiative format. In addition to segmentation data, additional clinical demographic data germane to body composition analysis have been retrospectively collected for these patients. These data are a valuable resource for studying sarcopenia and body composition analysis in patients with HNC.

摘要

准确确定肌肉减少症对于头颈部癌症(HNC)患者的疾病管理至关重要。目前,肌肉减少症的定量测定依赖于从计算机断层扫描(CT)横截面成像获得的骨骼肌的手动生成分割。这促使越来越多地使用机器学习模型来自动确定肌肉减少症。然而,现有的数据集目前没有提供在构建这些模型时所需的 C3 椎体水平的必要的手动生成的骨骼肌分割。在本数据描述符中,从癌症成像档案中选择了一组 394 名 HNC 患者,并用 sliceOmatic 在 C3 椎体水平手动分割了他们的骨骼肌和脂肪组织。随后,使用公开分发的 Python 脚本,我们以神经影像学信息学技术倡议格式生成了相应的分割文件。除了分割数据外,还为这些患者回顾性收集了与身体成分分析相关的其他临床人口统计学数据。这些数据是研究 HNC 患者肌肉减少症和身体成分分析的宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/649d/9346108/75e7533477ca/41597_2022_1587_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验