Suppr超能文献

大规模众包放射治疗分割跨越多种癌症解剖部位。

Large scale crowdsourced radiotherapy segmentations across a variety of cancer anatomic sites.

机构信息

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Sci Data. 2023 Mar 22;10(1):161. doi: 10.1038/s41597-023-02062-w.

Abstract

Clinician generated segmentation of tumor and healthy tissue regions of interest (ROIs) on medical images is crucial for radiotherapy. However, interobserver segmentation variability has long been considered a significant detriment to the implementation of high-quality and consistent radiotherapy dose delivery. This has prompted the increasing development of automated segmentation approaches. However, extant segmentation datasets typically only provide segmentations generated by a limited number of annotators with varying, and often unspecified, levels of expertise. In this data descriptor, numerous clinician annotators manually generated segmentations for ROIs on computed tomography images across a variety of cancer sites (breast, sarcoma, head and neck, gynecologic, gastrointestinal; one patient per cancer site) for the Contouring Collaborative for Consensus in Radiation Oncology challenge. In total, over 200 annotators (experts and non-experts) contributed using a standardized annotation platform (ProKnow). Subsequently, we converted Digital Imaging and Communications in Medicine data into Neuroimaging Informatics Technology Initiative format with standardized nomenclature for ease of use. In addition, we generated consensus segmentations for experts and non-experts using the Simultaneous Truth and Performance Level Estimation method. These standardized, structured, and easily accessible data are a valuable resource for systematically studying variability in segmentation applications.

摘要

临床医生对医学图像上肿瘤和健康组织感兴趣区域 (ROI) 的分割对于放射治疗至关重要。然而,观察者间分割的可变性长期以来一直被认为是实现高质量和一致放射治疗剂量传递的重大障碍。这促使自动化分割方法的不断发展。然而,现有的分割数据集通常仅提供由数量有限的注释者生成的分割,这些注释者具有不同且通常未指定的专业水平。在这个数据描述符中,许多临床医生注释者使用标准化的注释平台 (ProKnow) 为放射肿瘤学共识轮廓协作挑战赛中的各种癌症部位(乳房、肉瘤、头颈部、妇科、胃肠道;每个癌症部位一个患者)的计算机断层扫描图像上的 ROI 手动生成分割。总共有 200 多名注释者(专家和非专家)使用该平台进行了注释。随后,我们将数字成像和通信在医学中的数据转换为神经影像学信息学技术倡议格式,并使用标准化命名法以方便使用。此外,我们使用同时真实性和性能水平估计方法为专家和非专家生成共识分割。这些标准化、结构化且易于访问的数据是系统研究分割应用中可变性的宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99dd/10033824/dbc83b8b865e/41597_2023_2062_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验