Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada.
Institute of Data Science, Carleton University, Ottawa, ON, Canada.
Sci Rep. 2022 Aug 2;12(1):13237. doi: 10.1038/s41598-022-16493-9.
The identification of novel drug-target interactions (DTI) is critical to drug discovery and drug repurposing to address contemporary medical and public health challenges presented by emergent diseases. Historically, computational methods have framed DTI prediction as a binary classification problem (indicating whether or not a drug physically interacts with a given protein target); however, framing the problem instead as a regression-based prediction of the physiochemical binding affinity is more meaningful. With growing databases of experimentally derived drug-target interactions (e.g. Davis, Binding-DB, and Kiba), deep learning-based DTI predictors can be effectively leveraged to achieve state-of-the-art (SOTA) performance. In this work, we formulated a DTI competition as part of the coursework for a senior undergraduate machine learning course and challenged students to generate component DTI models that might surpass SOTA models and effectively combine these component models as part of a meta-model using the Reciprocal Perspective (RP) multi-view learning framework. Following 6 weeks of concerted effort, 28 student-produced component deep-learning DTI models were leveraged in this work to produce a new SOTA RP-DTI model, denoted the Meta Undergraduate Student DTI (MUSDTI) model. Through a series of experiments we demonstrate that (1) RP can considerably improve SOTA DTI prediction, (2) our new double-cold experimental design is more appropriate for emergent DTI challenges, (3) that our novel MUSDTI meta-model outperforms SOTA models, (4) that RP can improve upon individual models as an ensembling method, and finally, (5) RP can be utilized for low computation transfer learning. This work introduces a number of important revelations for the field of DTI prediction and sequence-based, pairwise prediction in general.
鉴定新的药物-靶点相互作用(DTI)对于药物发现和药物再利用至关重要,以应对新兴疾病带来的当代医学和公共卫生挑战。从历史上看,计算方法将 DTI 预测构造成一个二元分类问题(指示药物是否与给定的蛋白质靶标物理相互作用);然而,将问题构造成基于回归的物理结合亲和力的预测更有意义。随着越来越多的实验衍生的药物-靶点相互作用数据库(例如 Davis、Binding-DB 和 Kiba)的出现,基于深度学习的 DTI 预测器可以有效地被利用来实现最先进(SOTA)的性能。在这项工作中,我们作为一门高级本科机器学习课程的课程作业的一部分,提出了一个 DTI 竞赛,并挑战学生生成可能超越 SOTA 模型的组件 DTI 模型,并有效地将这些组件模型作为元模型的一部分,使用互惠视角(RP)多视图学习框架。经过 6 周的协同努力,这项工作利用了 28 个学生制作的组件深度学习 DTI 模型来生成一个新的 SOTA RP-DTI 模型,称为元本科生 DTI(MUSDTI)模型。通过一系列实验,我们证明了(1)RP 可以大大提高 SOTA DTI 预测的性能,(2)我们新的双冷实验设计更适合新兴的 DTI 挑战,(3)我们的新型 MUSDTI 元模型优于 SOTA 模型,(4)RP 可以作为一种集成方法来改进单个模型,最后,(5)RP 可以用于低计算的迁移学习。这项工作为 DTI 预测和基于序列的、成对预测领域引入了一些重要的启示。