GSL-DTI:用于药物-靶标相互作用预测的图结构学习网络。

GSL-DTI: Graph structure learning network for Drug-Target interaction prediction.

机构信息

College of Computer and Control Engineering, Northeast Forestry University,Harbin 150006, China.

College of Computer and Control Engineering, Northeast Forestry University,Harbin 150006, China.

出版信息

Methods. 2024 Mar;223:136-145. doi: 10.1016/j.ymeth.2024.01.018. Epub 2024 Feb 14.

Abstract

MOTIVATION

Drug-target interaction prediction is an important area of research to predict whether there is an interaction between a drug molecule and its target protein. It plays a critical role in drug discovery and development by facilitating the identification of potential drug candidates and expediting the overall process. Given the time-consuming, expensive, and high-risk nature of traditional drug discovery methods, the prediction of drug-target interactions has become an indispensable tool. Using machine learning and deep learning to tackle this class of problems has become a mainstream approach, and graph-based models have recently received much attention in this field. However, many current graph-based Drug-Target Interaction (DTI) prediction methods rely on manually defined rules to construct the Drug-Protein Pair (DPP) network during the DPP representation learning process. However, these methods fail to capture the true underlying relationships between drug molecules and target proteins.

RESULTS

We propose GSL-DTI, an automatic graph structure learning model used for predicting drug-target interactions (DTIs). Initially, we integrate large-scale heterogeneous networks using a graph convolution network based on meta-paths, effectively learning the representations of drugs and target proteins. Subsequently, we construct drug-protein pairs based on these representations. In contrast to previous studies that construct DPP networks based on manual rules, our method introduces an automatic graph structure learning approach. This approach utilizes a filter gate on the affinity scores of DPPs and relies on the classification loss of downstream tasks to guide the learning of the underlying DPP network structure. Based on the learned DPP network, we transform the prediction of drug-target interactions into a node classification problem. The comprehensive experiments conducted on three public datasets have shown the superiority of GSL-DTI in the tasks of DTI prediction. Additionally, GSL-DTI provides a fresh perspective for advancing research in graph structure learning for DTI prediction.

摘要

动机

药物-靶标相互作用预测是预测药物分子与其靶蛋白之间是否存在相互作用的重要研究领域。它通过促进潜在药物候选物的识别并加速整个过程,在药物发现和开发中起着至关重要的作用。鉴于传统药物发现方法的耗时、昂贵和高风险性质,药物-靶标相互作用的预测已成为不可或缺的工具。使用机器学习和深度学习来解决这类问题已成为主流方法,基于图的模型在该领域最近受到了广泛关注。然而,许多当前基于图的药物-靶标相互作用(DTI)预测方法在 DPP 表示学习过程中依赖于手动定义的规则来构建药物-蛋白对(DPP)网络。然而,这些方法未能捕捉到药物分子和靶蛋白之间的真实潜在关系。

结果

我们提出了 GSL-DTI,这是一种用于预测药物-靶标相互作用(DTI)的自动图结构学习模型。首先,我们使用基于元路径的图卷积网络整合大规模异构网络,有效地学习药物和靶蛋白的表示。随后,我们基于这些表示构建药物-蛋白对。与之前基于手动规则构建 DPP 网络的研究不同,我们的方法引入了自动图结构学习方法。该方法在 DPP 的亲和得分上使用滤波器门,并依赖下游任务的分类损失来指导底层 DPP 网络结构的学习。基于学习到的 DPP 网络,我们将药物-靶标相互作用的预测转化为节点分类问题。在三个公共数据集上进行的综合实验表明,GSL-DTI 在 DTI 预测任务中具有优越性。此外,GSL-DTI 为推进 DTI 预测的图结构学习研究提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索