Zhang Ran, Wang Zhanjie, Wang Xuezhi, Meng Zhen, Cui Wenjuan
Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100083, China.
School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad079.
Drug-target interaction (DTI) prediction can identify novel ligands for specific protein targets, and facilitate the rapid screening of effective new drug candidates to speed up the drug discovery process. However, the current methods are not sensitive enough to complex topological structures, and complicated relations between multiple node types are not fully captured yet. To address the above challenges, we construct a metapath-based heterogeneous bioinformatics network, and then propose a DTI prediction method with metapath-based hierarchical transformer and attention network for drug-target interaction prediction (MHTAN-DTI), applying metapath instance-level transformer, single-semantic attention and multi-semantic attention to generate low-dimensional vector representations of drugs and proteins. Metapath instance-level transformer performs internal aggregation on the metapath instances, and models global context information to capture long-range dependencies. Single-semantic attention learns the semantics of a certain metapath type, introduces the central node weight and assigns different weights to different metapath instances to obtain the semantic-specific node embedding. Multi-semantic attention captures the importance of different metapath types and performs weighted fusion to attain the final node embedding. The hierarchical transformer and attention network weakens the influence of noise data on the DTI prediction results, and enhances the robustness and generalization ability of MHTAN-DTI. Compared with the state-of-the-art DTI prediction methods, MHTAN-DTI achieves significant performance improvements. In addition, we also conduct sufficient ablation studies and visualize the experimental results. All the results demonstrate that MHTAN-DTI can offer a powerful and interpretable tool for integrating heterogeneous information to predict DTIs and provide new insights into drug discovery.
药物-靶点相互作用(DTI)预测可以识别针对特定蛋白质靶点的新型配体,并有助于快速筛选有效的新药候选物,以加速药物发现过程。然而,当前方法对复杂的拓扑结构不够敏感,尚未充分捕捉多种节点类型之间的复杂关系。为应对上述挑战,我们构建了一个基于元路径的异构生物信息网络,然后提出一种用于药物-靶点相互作用预测的基于元路径的分层变压器和注意力网络的DTI预测方法(MHTAN-DTI),应用元路径实例级变压器、单语义注意力和多语义注意力来生成药物和蛋白质的低维向量表示。元路径实例级变压器对元路径实例进行内部聚合,并对全局上下文信息进行建模以捕捉长程依赖关系。单语义注意力学习特定元路径类型的语义,引入中心节点权重并为不同的元路径实例分配不同的权重以获得语义特定的节点嵌入。多语义注意力捕捉不同元路径类型的重要性并进行加权融合以获得最终的节点嵌入。分层变压器和注意力网络减弱了噪声数据对DTI预测结果的影响,并增强了MHTAN-DTI的鲁棒性和泛化能力。与现有最先进的DTI预测方法相比,MHTAN-DTI取得了显著的性能提升。此外,我们还进行了充分的消融研究并可视化了实验结果。所有结果表明,MHTAN-DTI可以提供一个强大且可解释的工具,用于整合异构信息以预测DTI,并为药物发现提供新的见解。