Suppr超能文献

基于 UNet 的白细胞分割与分类。

Segmentation and Classification of White Blood Cells Using the UNet.

机构信息

Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

N. M. A. M Institute of Technology Nitte, Karkala, India.

出版信息

Contrast Media Mol Imaging. 2022 Jul 11;2022:5913905. doi: 10.1155/2022/5913905. eCollection 2022.

Abstract

In the bone marrow, plasma cells are made up of B lymphocytes and are a type of WBC. These plasma cells produce antibodies that help to keep bacteria and viruses at bay, thus preventing inflammation. This presents a major challenge for segmenting blood cells, since numerous image processing methods are used before segmentation to enhance image quality. White blood cells can be analyzed by a pathologist with the aid of computer software to identify blood diseases accurately and early. This study proposes a novel model that uses the ResNet and UNet networks to extract features and then segments leukocytes from blood samples. Based on the experimental results, this model appears to perform well, which suggests it is an appropriate tool for the analysis of hematology data. By evaluating the model using three datasets consisting of three different types of WBC, a cross-validation technique was applied to assess it based on the publicly available dataset. The overall segmentation accuracy of the proposed model was around 96%, which proved that the model was better than previous approaches, such as DeepLabV3+ and ResNet-50.

摘要

在骨髓中,浆细胞由 B 淋巴细胞组成,是白细胞的一种。这些浆细胞产生抗体,帮助抵御细菌和病毒,从而防止炎症。这给血细胞的分割带来了很大的挑战,因为在分割之前,通常会使用多种图像处理方法来提高图像质量。病理学家可以借助计算机软件对白细胞进行分析,以便准确、早期地识别血液疾病。本研究提出了一种新的模型,该模型使用 ResNet 和 UNet 网络提取特征,然后对血液样本中的白细胞进行分割。基于实验结果,该模型的表现似乎很好,表明它是分析血液学数据的合适工具。通过使用由三种不同类型的白细胞组成的三个数据集来评估模型,使用交叉验证技术基于公开数据集对其进行评估。所提出模型的整体分割准确率约为 96%,这证明该模型优于 DeepLabV3+和 ResNet-50 等先前的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45ab/9293541/7d2ab1939a8a/CMMI2022-5913905.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验