Suppr超能文献

MSD-Net:用于稀疏数据光声图像重建的多尺度密集卷积神经网络

MSD-Net: Multi-scale dense convolutional neural network for photoacoustic image reconstruction with sparse data.

作者信息

Wang Liangjie, Meng Yi-Chao, Qian Yiming

机构信息

Institute of Fiber Optics, Shanghai University, Shanghai 201800, China.

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China.

出版信息

Photoacoustics. 2024 Dec 12;41:100679. doi: 10.1016/j.pacs.2024.100679. eCollection 2025 Feb.

Abstract

Photoacoustic imaging (PAI) is an emerging hybrid imaging technology that combines the advantages of optical and ultrasound imaging. Despite its excellent imaging capabilities, PAI still faces numerous challenges in clinical applications, particularly sparse spatial sampling and limited view detection. These limitations often result in severe streak artifacts and blurring when using standard methods to reconstruct images from incomplete data. In this work, we propose an improved convolutional neural network (CNN) architecture, called multi-scale dense UNet (MSD-Net), to correct artifacts in 2D photoacoustic tomography (PAT). MSD-Net exploits the advantages of multi-scale information fusion and dense connections to improve the performance of CNN. Experimental validation with both simulated and datasets demonstrates that our method achieves better reconstructions with improved speed.

摘要

光声成像(PAI)是一种新兴的混合成像技术,它结合了光学成像和超声成像的优点。尽管PAI具有出色的成像能力,但在临床应用中仍面临诸多挑战,尤其是稀疏空间采样和有限视野检测。当使用标准方法从不完整数据重建图像时,这些限制常常导致严重的条纹伪影和模糊。在这项工作中,我们提出了一种改进的卷积神经网络(CNN)架构,称为多尺度密集UNet(MSD-Net),以校正二维光声断层扫描(PAT)中的伪影。MSD-Net利用多尺度信息融合和密集连接的优点来提高CNN的性能。对模拟数据集和真实数据集的实验验证表明,我们的方法在提高速度的同时实现了更好的重建效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e40a/11720879/f6d88db710f9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验