Suppr超能文献

Beat-to-beat estimation of peripheral resistance and arterial compliance during pressure transients.

作者信息

Toorop G P, Westerhof N, Elzinga G

出版信息

Am J Physiol. 1987 Jun;252(6 Pt 2):H1275-83. doi: 10.1152/ajpheart.1987.252.6.H1275.

Abstract

We have used a computer-based parameter estimation method to obtain peripheral resistance, total arterial compliance, and characteristic resistance from the measurement of aortic pressure and flow in the open-thorax cat, assuming the three-element windkessel as a model of the systemic arterial tree. The method can be applied on a beat-to-beat basis in the steady state and in transients. We have validated this method by analyzing nonsteady-state data obtained from an electrical analog with fixed values of the resistances and compliance and by showing that the values obtained by this procedure were within 5% of the fixed values of the circuit. Changes in total peripheral resistance and arterial compliance were studied before, during, and after acute heart rate changes in five open-thorax cats with blocked autonomous nervous system. As expected, the peripheral resistance, estimated during the heart rate transient [3.93 +/- 0.94 (SE) kPa X ml-1 X s] was the same as before the transient (3.53 +/- 0.83 kPa X ml-1 X s); total arterial compliances were also identical (0.28 +/- 0.04 vs. 0.27 +/- 0.03 ml/kPa). In six cats without nervous blockade we obtained similar results. Calculation of peripheral resistance during transients from the mean pressure-to-mean flow ratio, i.e., without correction for arterial compliance, suggested changes in resistance values of less than or equal to 57%, which shows that correction is necessary. The findings indicate that peripheral resistance and total arterial compliance can be estimated in vivo on a beat-to-beat basis, even during hemodynamic transients.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验