Suppr超能文献

纤毛诱导的表面速度对侧脑室脑脊液交换的影响。

Effect of cilia-induced surface velocity on cerebrospinal fluid exchange in the lateral ventricles.

机构信息

Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan.

Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan.

出版信息

J R Soc Interface. 2022 Aug;19(193):20220321. doi: 10.1098/rsif.2022.0321. Epub 2022 Aug 3.

Abstract

Ciliary motility disorders are known to cause hydrocephalus. The instantaneous velocity of cerebrospinal fluid (CSF) flow is dominated by artery pulsation, and it remains unclear why ciliary dysfunction results in hydrocephalus. In this study, we investigated the effects of cilia-induced surface velocity on CSF flow using computational fluid dynamics. A geometric model of the human ventricles was constructed using medical imaging data. The CSF produced by the choroid plexus and cilia-induced surface velocity were given as the velocity boundary conditions at the ventricular walls. We developed healthy and reduced cilia motility models based on experimental data of cilia-induced velocity in healthy wild-type and Dpcd-knockout mice. The results indicate that there is almost no difference in intraventricular pressure between healthy and reduced cilia motility models. Additionally, it was found that newly produced CSF from the choroid plexus did not spread to the anterior and inferior horns of the lateral ventricles in the reduced cilia motility model. These findings suggest that a ciliary motility disorder could delay CSF exchange in the anterior and inferior horns of the lateral ventricles.

摘要

纤毛运动障碍已知可导致脑积水。脑脊髓液(CSF)流动的瞬时速度主要由动脉搏动主导,而纤毛功能障碍为何导致脑积水仍不清楚。在这项研究中,我们使用计算流体动力学研究了纤毛引起的表面速度对 CSF 流动的影响。使用医学成像数据构建了人脑室的几何模型。将脉络丛产生的 CSF 和纤毛引起的表面速度作为脑室壁的速度边界条件。我们根据健康野生型和 Dpcd 敲除小鼠的纤毛诱导速度的实验数据,开发了健康和减少纤毛运动模型。结果表明,健康和减少纤毛运动模型之间的脑室内压力几乎没有差异。此外,还发现减少纤毛运动模型中,脉络丛产生的新 CSF 没有扩散到侧脑室的前角和下角。这些发现表明,纤毛运动障碍可能会延迟侧脑室前角和下角的 CSF 交换。

相似文献

1
Effect of cilia-induced surface velocity on cerebrospinal fluid exchange in the lateral ventricles.
J R Soc Interface. 2022 Aug;19(193):20220321. doi: 10.1098/rsif.2022.0321. Epub 2022 Aug 3.
2
Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles.
J R Soc Interface. 2014 Mar 12;11(94):20131189. doi: 10.1098/rsif.2013.1189. Print 2014 May 6.
3
Cerebrospinal Fluid Production and Absorption and Ventricular Enlargement Mechanisms in Hydrocephalus.
Neurol Med Chir (Tokyo). 2023 Apr 15;63(4):141-151. doi: 10.2176/jns-nmc.2022-0331. Epub 2023 Mar 1.
6
Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development.
Curr Biol. 2019 Jan 21;29(2):229-241.e6. doi: 10.1016/j.cub.2018.11.059. Epub 2019 Jan 3.
8
Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus.
J Cereb Blood Flow Metab. 2020 Sep;40(9):1849-1858. doi: 10.1177/0271678X19874790. Epub 2019 Sep 7.
9
Patient-specific computational fluid dynamic simulation of cerebrospinal fluid flow in the intracranial space.
Brain Res. 2022 Sep 1;1790:147962. doi: 10.1016/j.brainres.2022.147962. Epub 2022 Jun 3.
10
Multiple primary cilia modulate the fluid transcytosis in choroid plexus epithelium.
Traffic. 2010 Feb;11(2):287-301. doi: 10.1111/j.1600-0854.2009.01016.x. Epub 2009 Nov 17.

引用本文的文献

1
Advection versus diffusion in brain ventricular transport.
Fluids Barriers CNS. 2025 Aug 13;22(1):82. doi: 10.1186/s12987-025-00692-3.
4
Age-related cerebral ventriculomegaly occurs in patients with primary ciliary dyskinesia.
Fluids Barriers CNS. 2025 Jan 31;22(1):12. doi: 10.1186/s12987-024-00614-9.
5
Multiciliated ependymal cells: an update on biology and pathology in the adult brain.
Acta Neuropathol. 2024 Sep 10;148(1):39. doi: 10.1007/s00401-024-02784-0.
6
Pathogenic role of autoantibodies at the ependyma in autoimmune disorders of the central nervous system.
Front Cell Neurosci. 2023 Sep 13;17:1257000. doi: 10.3389/fncel.2023.1257000. eCollection 2023.

本文引用的文献

1
Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus.
Nat Neurosci. 2022 Apr;25(4):458-473. doi: 10.1038/s41593-022-01043-3. Epub 2022 Apr 4.
2
Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited.
Fluids Barriers CNS. 2022 Mar 22;19(1):26. doi: 10.1186/s12987-022-00323-1.
3
4
.
Brain Commun. 2020 Nov 6;2(2):fcaa187. doi: 10.1093/braincomms/fcaa187. eCollection 2020.
5
Methods to measure, model and manipulate fluid flow in brain.
J Neurosci Methods. 2020 Mar 1;333:108541. doi: 10.1016/j.jneumeth.2019.108541. Epub 2019 Dec 12.
6
Nonsense mutation in causes normal-pressure hydrocephalus with ciliary abnormalities.
Neurology. 2019 May 14;92(20):e2364-e2374. doi: 10.1212/WNL.0000000000007505. Epub 2019 Apr 19.
7
Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development.
Curr Biol. 2019 Jan 21;29(2):229-241.e6. doi: 10.1016/j.cub.2018.11.059. Epub 2019 Jan 3.
8
A mutation in causes neonatal hydrocephalus with abnormal motile cilia development in mice.
Development. 2018 Jan 9;145(1):dev154500. doi: 10.1242/dev.154500.
9
Glymphatic solute transport does not require bulk flow.
Sci Rep. 2016 Dec 8;6:38635. doi: 10.1038/srep38635.
10
Cilia-based flow network in the brain ventricles.
Science. 2016 Jul 8;353(6295):176-8. doi: 10.1126/science.aae0450.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验