Suppr超能文献

评估磁共振成像增强技术作为脑脊液计算流体动力学模型的输入数据。

Evaluating amplified magnetic resonance imaging as an input for computational fluid dynamics models of the cerebrospinal fluid.

作者信息

Vandenbulcke Sarah, Condron Paul, Dolfen Henri, Safaei Soroush, Holdsworth Samantha J, Degroote Joris, Segers Patrick

机构信息

Institute of Biomedical Engineering and Technology (IBITECH-BioMMedA), Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Gent, Belgium.

Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden.

出版信息

Interface Focus. 2025 Apr 4;15(1):20240039. doi: 10.1098/rsfs.2024.0039.

Abstract

Computational models that accurately capture cerebrospinal fluid (CSF) dynamics are valuable tools to study neurological disorders and optimize clinical treatments. While CSF dynamics interrelate with deformations of the ventricular volumes, these deformations have been simplified and even discarded in computational models because of the lack of detailed measurements. Amplified magnetic resonance imaging (aMRI) enables visualization of these complex deformations, but this technique has not been used for predicting CSF dynamics. To assess the feasibility of using aMRI as an input for computational fluid dynamics (CFD) models of the CSF, we deduced the amplified deformations of the cerebral ventricles from an aMRI dataset and imposed these deformations in our CFD model. Then, we compared the resulting CSF flow rates with those measured . The aMRI deformations yielded CSF flow following a pulsatile pattern in line with the flow measurements. The CSF flow rates were, however, subject to noise and increased. As a result, scaling of the deformations with a factor 1/8 was necessary to match the measured flow rates. This is the first application of aMRI for modelling CSF flow, and we demonstrate that incorporating non-uniform deformations can contribute to more detailed predictions and advance our understanding of ventricular CSF dynamics.

摘要

能够准确捕捉脑脊液(CSF)动力学的计算模型是研究神经系统疾病和优化临床治疗的宝贵工具。虽然脑脊液动力学与脑室容积的变形相互关联,但由于缺乏详细测量,这些变形在计算模型中被简化甚至忽略。放大磁共振成像(aMRI)能够可视化这些复杂的变形,但该技术尚未用于预测脑脊液动力学。为了评估将aMRI用作脑脊液计算流体动力学(CFD)模型输入的可行性,我们从aMRI数据集中推导了脑室的放大变形,并将这些变形应用于我们的CFD模型中。然后,我们将得到的脑脊液流速与测量值进行比较。aMRI变形产生的脑脊液流动呈现出与流量测量一致的脉动模式。然而,脑脊液流速受到噪声影响且有所增加。因此,有必要将变形比例缩小为1/8以匹配测量的流速。这是aMRI首次应用于脑脊液流动建模,我们证明纳入非均匀变形有助于更详细的预测,并增进我们对脑室脑脊液动力学的理解。

相似文献

本文引用的文献

1
3D Quantitative-Amplified Magnetic Resonance Imaging (3D q-aMRI).三维定量增强磁共振成像(3D q-aMRI)
Bioengineering (Basel). 2024 Aug 20;11(8):851. doi: 10.3390/bioengineering11080851.
5
Magnetic resonance imaging of the pulsing brain: a systematic review.脉冲式脑磁共振成像:系统评价。
MAGMA. 2023 Feb;36(1):3-14. doi: 10.1007/s10334-022-01043-1. Epub 2022 Oct 15.
8
3D amplified MRI (aMRI).3D 增强磁共振成像(增强 MRI)。
Magn Reson Med. 2021 Sep;86(3):1674-1686. doi: 10.1002/mrm.28797. Epub 2021 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验