Herlyng Halvor, Ellingsrud Ada J, Kuchta Miroslav, Jeong Inyoung, Rognes Marie E, Jurisch-Yaksi Nathalie
Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway.
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
Fluids Barriers CNS. 2025 Aug 13;22(1):82. doi: 10.1186/s12987-025-00692-3.
Cerebrospinal fluid (CSF) is integral to brain function. CSF provides mechanical support for the brain and helps distribute nutrients, neurotransmitters and metabolites throughout the central nervous system. CSF flow is driven by several processes, including the beating of motile cilia located on the walls of the brain ventricles. Despite the physiological importance of CSF, the underlying mechanisms of CSF flow and solute transport in the brain ventricles remain to be comprehensively resolved. This study analyzes and evaluates specifically the role of motile cilia in CSF flow and transport. We developed finite element methods for modeling flow and transport using the geometry of embryonic zebrafish brain ventricles, for which we have detailed knowledge of cilia properties and CSF motion. The computational model is validated by in vivo experiments that monitor transport of a photoconvertible protein secreted in the brain ventricles. Our results show that while cilia contribute to advection of large particles, diffusion plays a significant role in the transport of small solutes. We also demonstrate how cilia location and the geometry of the ventricular system impact solute distribution. Altogether, this work presents a computational framework that can be applied to other ventricular systems, together with new concepts of how molecules are transported within the brain and its ventricles.
脑脊液(CSF)对脑功能至关重要。脑脊液为大脑提供机械支撑,并有助于在整个中枢神经系统中分布营养物质、神经递质和代谢产物。脑脊液流动由多种过程驱动,包括位于脑室壁上的能动纤毛的摆动。尽管脑脊液具有重要的生理功能,但脑室中脑脊液流动和溶质运输的潜在机制仍有待全面解析。本研究专门分析和评估了能动纤毛在脑脊液流动和运输中的作用。我们利用斑马鱼胚胎脑室的几何结构开发了用于模拟流动和运输的有限元方法,我们对其纤毛特性和脑脊液运动有详细了解。该计算模型通过监测脑室内分泌的光转换蛋白运输的体内实验进行了验证。我们的结果表明,虽然纤毛有助于大颗粒的平流,但扩散在小溶质的运输中起着重要作用。我们还展示了纤毛位置和脑室系统的几何结构如何影响溶质分布。总之,这项工作提出了一个可应用于其他脑室系统的计算框架,以及关于分子在脑及其脑室中如何运输的新概念。